No Arabic abstract
Online social networks (OSNs) enable researchers to study the social universe at a previously unattainable scale. The worldwide impact and the necessity to sustain their rapid growth emphasize the importance to unravel the laws governing their evolution. We present a quantitative two-parameter model which reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic mechanisms involved. Our findings suggest that the coupling between the real pre-existing underlying social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The empirical validation of our model, on a macroscopic scale, reveals that virality is four to five times stronger than mass media influence and, on a microscopic scale, individuals have a higher subscription probability if invited by weaker social contacts, in agreement with the strength of weak ties paradigm.
We present a model that takes into account the coupling between evolutionary game dynamics and social influence. Importantly, social influence and game dynamics take place in different domains, which we model as different layers of a multiplex network. We show that the coupling between these dynamical processes can lead to cooperation in scenarios where the pure game dynamics predicts defection. In addition, we show that the structure of the network layers and the relation between them can further increase cooperation. Remarkably, if the layers are related in a certain way, the system can reach a polarized metastable state.These findings could explain the prevalence of polarization observed in many social dilemmas.
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network [1]; or, if immunized, would prevent the diffusion of a large scale epidemic [2,3]. Localizing this optimal, i.e. minimal, set of structural nodes, called influencers, is one of the most important problems in network science [4,5]. Despite the vast use of heuristic strategies to identify influential spreaders [6-14], the problem remains unsolved. Here, we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix [15] of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly-connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. Eventually, the present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase [16].
In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.
Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, $C(k) sim k^{-1}$ and $C sim n^{-1}$, where $k$ and $n$ refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and aging of networks where intrinsic features of individual nodes drive their popularity, and hence degree.
We elaborate on a linear time implementation of the Collective Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in a network via optimal percolation. We show that the computational complexity of CI is O(N log N) when removing nodes one-by-one, with N the number of nodes. This is made possible by using an appropriate data structure to process the CI values, and by the finite radius l of the CI sphere. Furthermore, we introduce a simple extension of CI when l is infinite, the CI propagation (CI_P) algorithm, that considers the global optimization of influence via message passing in the whole network and identifies a slightly smaller fraction of influencers than CI. Remarkably, CI_P is able to reproduce the exact analytical optimal percolation threshold obtained by Bau, Wormald, Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little improvement left for random graphs. We also introduce the Collective Immunization Belief Propagation algorithm (CI_BP), a belief-propagation (BP) variant of CI based on optimal immunization, which has the same performance as CI_P. However, this small augmented performance of the order of 1-2 % in the low influencers tail comes at the expense of increasing the computational complexity from O(N log N) to O(N^2 log N), rendering both, CI_P and CI_BP, prohibitive for finding influencers in modern-day big-data. The same nonlinear running time drawback pertains to a recently introduced BP-decimation (BPD) algorithm by Mugisha, Zhou, arXiv:1603.05781. For instance, we show that for big-data social networks of typically 200 million users (eg, active Twitter users sending 500 million tweets per day), CI finds the influencers in less than 3 hours running on a single CPU, while the BP algorithms (CI_P, CI_BP and BDP) would take more than 3,000 years to accomplish the same task.