Do you want to publish a course? Click here

Total destruction of Lagrangian tori

100   0   0.0 ( 0 )
 Added by Lin Wang
 Publication date 2014
  fields
and research's language is English
 Authors Lin Wang




Ask ChatGPT about the research

For an integrable Tonelli Hamiltonian with $d (dgeq 2)$ degrees of freedom, we show that all of the Lagrangian tori can be destroyed by analytic perturbations which are arbitrarily small in the $C^{d-delta}$ topology.



rate research

Read More

145 - Jinxin Xue 2014
In this paper, we show the existence of non contractible periodic orbits in Hamiltonian systems defined on $T^*T^n$ separating two Lagrangian tori under certain cone assumption. Our result answers a question of Polterovich in cite{P} in a sharp way. As an application, we find periodic orbits of almost all the homotopy types on a dense set of energy level in Lorentzian type mechanical Hamiltonian systems defined on $T^*T^2$. This solves a problem of Arnold in cite{A}.
For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperkahler manifold is a fiber of an almost holomorphic Lagrangian fibration, giving an affirmative answer to a question of Beauvilles. Our proof employs two different tools: the theory of action-angle variables for algebraically completely integrable Hamiltonian systems and Wielandts theory of subnormal subgroups.
Fix a symplectic K3 surface X homologically mirror to an algebraic K3 surface Y by an equivalence taking a graded Lagrangian torus L in X to the skyscraper sheaf of a point y of Y. We show there are Lagrangian tori with vanishing Maslov class in X whose class in the Grothendieck group of the Fukaya category is not generated by Lagrangian spheres. This is mirror to a statement about the `Beauville--Voisin subring in the Chow groups of Y, and fits into a conjectural relationship between Lagrangian cobordism and rational equivalence of algebraic cycles.
281 - Mauricio Garay 2013
We consider a pair (H,I) where I is an involutive ideal of a Poisson algebra and H lies in I. We show that if I defines a 2n-gon singularity then, under arithmetical conditions on H, any deformation of H can integrated as a deformation of (H,I).
The KAM (Kolmogorov-Arnold-Moser) theorem guarantees the stability of quasi-periodic invariant tori by perturbation in some Hamiltonian systems. Michel Herman proved a similar result for quasi-periodic motions, with $k$-dimensional involutive manifolds in Hamiltonian systems with $n$ degrees of freedom $n leq k < 2n $. In this paper, we extend this result to the case of a quasi-periodic motion on symplectic tori $k = 2n$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا