We employ the approximation of overlapped scattering potentials of charged dust particles exposed to streaming ions to deduce the equation of state for a stationary dust cloud in the radio frequency discharge apart from the void dust boundary. The obtained equation defines the potential of a dust particle as a function of the ion number density, the mass of a carrier gas atom, and the electron temperature. A scaling law that relates the particle number density to the particle radius and electron temperature in different systems is formulated. Based on the proposed approach the radius of a cavity around a large particle in the bulk of a cloud is estimated. The results of calculation are in a reasonable agreement with the experimental data available in literature.
Oscillation of particles in a dust crystal formed in a low-pressure radio-frequency gas discharge under microgravity conditions is studied. Analysis of experimental data obtained in our previous study shows that the oscillations are highly isotropic and nearly homogeneous in the bulk of a dust crystal; oscillations of the neighboring particles are significantly correlated. We demonstrate that the standard deviation of the particle radius-vector along with the local particle number density fully define the coupling parameter of the particle subsystem. The latter proves to be of the order of 100, which is two orders of magnitude lower than the coupling parameter estimated for the Brownian diffusion of particles with the gas temperature. This means significant kinetic overheating of particles under stationary conditions. A theoretical interpretation of the large amplitude of oscillation implies the increase of particle charge fluctuations in the dust crystal. The theoretical estimates are based on the ionization equation of state for the complex plasma and the equation for the plasma perturbation evolution. They are shown to match the results of experimental data processing. Estimated order of magnitude of the coupling parameter accounts for the existence of the solid-liquid phase transition observed for similar systems in experiments.
Subsonic motion of a large particle moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the particle trajectories show that the large particle moves almost freely through the bulk of plasma crystal, while dust particles move along characteristic alpha-shaped pathways near the large particle. In the hydrodynamic approximation, we develop a theory of nonviscous dust particles motion about a large particle and calculate particle trajectories. A good agreement with experiment validates our approach.
Heat transport in a three-dimensional complex (dusty) plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). An extended suspension of microparticles was locally heated by a shear flow created by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analysed and from these, using a fluid heat transport equation that takes viscous heating and neutral gas drag into account, the complex plasmas thermal diffusivity and kinematic viscosity were calculated. Their values are compared with previous results reported in ground-based experiments with complex plasmas.
We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.
The charge of microparticles immersed in the dc discharge of the Plasmakristall-4 experimental facility has been estimated using the particle velocities from experiments performed on Earth and under microgravity conditions on the International Space Station. The theoretical model used for these estimates is based on the balance of the forces acting on a single particle in the discharge. The model takes into account the radial dependence of the discharge parameters and describes reasonably well the experimental measurements.
D. I. Zhukhovitskii
,V. I. Molotkov
,
.
(2014)
.
"A scaling law for the dust cloud in radio frequency discharge under microgravity conditions"
.
Dmitry Zhukhovitskii I.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا