Do you want to publish a course? Click here

Free Applicative Functors

523   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Applicative functors are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell. Applicative functors are to be preferred to monads when the structure of a computation is fixed a priori. That makes it possible to perform certain kinds of static analysis on applicative values. We define a notion of free applicative functor, prove that it satisfies the appropriate laws, and that the construction is left adjoint to a suitable forgetful functor. We show how free applicative functors can be used to implement embedded DSLs which can be statically analysed.



rate research

Read More

For two DG-categories A and B we define the notion of a spherical Morita quasi-functor A -> B. We construct its associated autoequivalences: the twist T of D(B) and the co-twist F of D(A). We give powerful sufficiency criteria for a quasi-functor to be spherical and for the twists associated to a collection of spherical quasi-functors to braid. Using the framework of DG-enhanced triangulated categories, we translate all of the above to Fourier-Mukai transforms between the derived categories of algebraic varieties. This is a broad generalisation of the results on spherical objects in [ST01] and on spherical functors in [Ann07]. In fact, this paper replaces [Ann07], which has a fatal gap in the proof of its main theorem. Though conceptually correct, the proof was impossible to fix within the framework of triangulated categories.
Parallel transport of a connection in a smooth fibre bundle yields a functor from the path groupoid of the base manifold into a category that describes the fibres of the bundle. We characterize functors obtained like this by two notions we introduce: local trivializations and smooth descent data. This provides a way to substitute categories of functors for categories of smooth fibre bundles with connection. We indicate that this concept can be generalized to connections in categorified bundles, and how this generalization improves the understanding of higher dimensional parallel transport.
We give an elementary and direct combinatorial definition of opetopes in terms of trees, well-suited for graphical manipulation and explicit computation. To relate our definition to the classical definition, we recast the Baez-Dolan slice construction for operads in terms of polynomial monads: our opetopes appear naturally as types for polynomial monads obtained by iterating the Baez-Dolan construction, starting with the trivial monad. We show that our notion of opetope agrees with Leinsters. Next we observe a suspension operation for opetopes, and define a notion of stable opetopes. Stable opetopes form a least fixpoint for the Baez-Dolan construction. A final section is devoted to example computations, and indicates also how the calculus of opetopes is well-suited for machine implementation.
We propose a new theory of (non-split) P^n-functors. These are F: A -> B for which the adjunction monad RF is a repeated extension of Id_A by powers of an autoequivalence H and three conditions are satisfied: the monad condition, the adjoints condition, and the highest degree term condition. This unifies and extends the two earlier notions of spherical functors and split P^n-functors. We construct the P-twist of such F and prove it to be an autoequivalence. We then give a criterion for F to be a P^n-functor which is stronger than the definition but much easier to check in practice. It involves only two conditions: the strong monad condition and the weak adjoints condition. For split P^n-functors, we prove Segals conjecture on their relation to spherical functors. Finally, we give four examples of non-split P^n-functors: spherical functors, extensions by zero, cyclic covers, and family P-twists. For the latter, we show the P-twist to be the derived monodromy of associated Mukai flop, the so-called `flop-flop = twist formula.
131 - Russell OConnor 2011
This paper gives two new categorical characterisations of lenses: one as a coalgebra of the store comonad, and the other as a monoidal natural transformation on a category of a certain class of coalgebras. The store comonad of the first characterisation can be generalized to a Cartesian store comonad, and the coalgebras of this Cartesian store comonad turn out to be exactly the Biplates of the Uniplate generic programming library. On the other hand, the monoidal natural transformations on functors can be generalized to work on a category of more specific coalgebras. This generalization turns out to be the type of compos from the Compos generic programming library. A theorem, originally conjectured by van Laarhoven, proves that these two generalizations are isomorphic, thus the core data types of the Uniplate and Compos libraries supporting generic program on single recursive types are the same. Both the Uniplate and Compos libraries generalize this core functionality to support mutually recursive types in different ways. This paper proposes a third extension to support mutually recursive data types that is as powerful as Compos and as easy to use as Uniplate. This proposal, called Multiplate, only requires rank 3 polymorphism in addition to the normal type class mechanism of Haskell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا