No Arabic abstract
Spinorial or multi-component Bose-Einstein condensates may sustain fractional quanta of circulation, vorticant topological excitations with half integer windings of phase and polarization. Matter-light quantum fluids, such as microcavity polaritons, represent a unique test bed for realising strongly interacting and out-of-equilibrium condensates. The direct access to the phase of their wavefunction enables us to pursue the quest of whether half vortices ---rather than full integer vortices--- are the fundamental topological excitations of a spinor polariton fluid. Here, we are able to directly generate by resonant pulsed excitations, a polariton fluid carrying either the half or full vortex states as initial condition, and to follow their coherent evolution using ultrafast holography. Surprisingly we observe a rich phenomenology that shows a stable evolution of a phase singularity in a single component as well as in the full vortex state, spiraling, splitting and branching of the initial cores under different regimes and the proliferation of many vortex anti-vortex pairs in self generated circular ripples. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the phase singularities dynamics
If a quantum fluid is driven with enough angular momentum, at equilibrium the ground state of the system is given by a lattice of quantised vortices whose density is prescribed by the quantization of circulation. We report on the first experimental study of the Feynman-Onsager relation in a non-equilibrium polariton fluid, free to expand and rotate. Upon initially imprinting a lattice of vortices in the quantum fluid, we track the vortex core positions on picosecond time scales. We observe an accelerated stretching of the lattice and an outward bending of the linear trajectories of the vortices, due to the repulsive polariton interactions. Access to the full density and phase fields allows us to detect a small deviation from the Feynman-Onsager rule in terms of a transverse velocity component, due to the density gradient of the fluid envelope acting on the vortex lattice.
Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. Here we realize experimentally these vortex clusters in a planar superfluid: a $^{87}$Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long times, maintaining the superfluid system in a high energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures, and have relevance to the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas.
We report the observation of spin domain walls bounded by half-quantum vortices (HQVs) in a spin-1 Bose-Einstein condensate with antiferromagnetic interactions. A spinor condensate is initially prepared in the easy-plane polar phase, and then, suddenly quenched into the easy-axis polar phase. Domain walls are created via the spontaneous $mathbb{Z}_2$ symmetry breaking in the phase transition and the walls dynamically split into composite defects due to snake instability. The end points of the defects are identified as HQVs for the polar order parameter and the mass supercurrent in their proximity is demonstrated using Bragg scattering. In a strong quench regime, we observe that singly charged quantum vortices are formed with the relaxation of free wall-vortex composite defects. Our results demonstrate a nucleation mechanism for composite defects via phase transition dynamics.
Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multi-component Gross-Pitaevskii equation which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.
We analyze the thermodynamics of the atomic and (nematic) pair superfluids appearing in the attractive two-dimensional Bose-Hubbard model with a three-body hard-core constraint that has been derived as an effective model for cold atoms subject to strong three-body losses in optical lattices. We show that the thermal disintegration of the pair superfluidity is governed by the proliferation of fractional half-vortices leading to a Berezinskii-Kosterlitz-Thousless transition with unusual jump in the helicity modulus. In addition to the (conventional) Berezinskii-Kosterlitz-Thousless transition out of the atomic superfluid, we furthermore identify a direct thermal phase transition separating the pair and the atomic superfluid phases, and show that this transition is continuous with critical scaling exponents consistent with those of the two-dimensional Ising universality class. We exhibit a direct connection between the partial loss of quasi long-range order at the Ising transition between the two superfluids and the parity selection in the atomic winding number fluctuations that distinguish the atomic from the pair superfluid.