Do you want to publish a course? Click here

Tunable plasmons in atomically thin gold nanodisks

147   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing, and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infrared frequencies, although coping with current computer speeds in integrated architectures still remains a major challenge. As a partial success, midinfrared light modulation has been recently achieved through gating patterned graphene. Here we show that atomically thin noble metal nanoislands can extend optical modulation to the visible and near-infrared spectral range. We find plasmons in thin metal nanodisks to produce similar absorption cross-sections as spherical particles of the same diameter. Using realistic levels of electrical doping, plasmons are shifted by about half their width, thus leading to a factor-of-two change in light absorption. These results, which we substantiate on microscopic quantum theory of the optical response, hold great potential for the development of electrical visible and near-infrared light modulation in integrable, nanoscale devices.



rate research

Read More

Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in situ on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blue shift of the emission with increasing temperature is well described using a two oscillator model for the temperature dependence of the band gap.
We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.
The observation of the electrically tunable and highly confined plasmons in graphene has stimulated the exploration of interesting properties of plasmons in other two dimensional materials. Recently, hyperbolic plasmon resonance modes are observed in exfoliated WTe2 films, a type-II Weyl semimetal with layered structure, providing a platform for the assembly of plasmons with hyperbolicity and exotic topological properties. However, the plasmon modes were observed in relatively thick and small-area films, which restrict the tunability and application for plasmons. Here, large-area (~ cm) WTe2 films with different thickness are grown by chemical vapor deposition method, in which plasmon resonance modes are observed in films with different thickness down to about 8 nm. Hybridization of plasmon and surface polar phonons of the substrate is revealed by mapping the plasmon dispersion. The plasmon frequency is demonstrated to be tunable by changing the temperature and film thickness. Our results facilitate the development of a tunable and scalable WTe2 plasmonic system for revealing topological properties and towards various applications in sensing, imaging and light modulation.
Real-world quantum applications, eg. on-chip quantum networks and quantum cryptography, necessitate large scale integrated single-photon sources with nanoscale footprint for modern information technology. While on-demand and high fidelity implantation of atomic scale single-photon sources in conventional 3D materials suffer from uncertainties due to the crystals dimensionality, layered 2D materials can host point-like centers with inherent confinement to a sub-nm plane. However, previous attempts to truly deterministically control spatial position and spectral homogeneity while maintaining the 2D character have not been realized. Here, we demonstrate the on-demand creation and precise positioning of single-photon sources in atomically thin MoS2 with very narrow ensemble broadening and near-unity fabrication yield. Focused ion beam irradiation creates 100s to 1000s of mono-typical atomistic defects with anti-bunched emission lines with sub-10 nm lateral and 0.7 nm axial positioning accuracy. Our results firmly establish 2D materials as a scalable platform for single-photon emitters with unprecedented control of position as well as photophysical properties owing to the all-interfacial nature.
The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental problem in many-body physics. The interest in this field has been renewed due to recent ground-breaking experiments with ultra-cold Fermi gases. Optical creation of an exciton or a polariton in a two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field due to an interplay between cavity-coupling favoring ultra-low mass polariton formation and exciton-electron interactions leading to polaron or trion formation. Here, we present cavity spectroscopy of gate-tunable monolayer MoSe$_2$ exhibiting strongly bound trion and polaron resonances, as well as non-perturbative coupling to a single microcavity mode. As the electron density is increased, the oscillator strength determined from the polariton splitting is gradually transferred from the higher-energy repulsive-exciton-polaron resonance to the lower-energy attractive-polaron manifold. Simultaneous observation of polariton formation in both attractive and repulsive branches indicate a new regime of polaron physics where the polariton impurity mass is much smaller than that of the electrons. Our findings shed new light on optical response of semiconductors in the presence of free carriers by identifying the Fermi polaron nature of excitonic resonances and constitute a first step in investigation of a new class of degenerate Bose-Fermi mixtures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا