Do you want to publish a course? Click here

Optical Photopolarimetry of Blazar OJ287

183   0   0.0 ( 0 )
 Added by Evgeni Ovcharov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from an original observational campaign comprising five epoch optical photopolarimetrical observations of the BL Lac-type AGN OJ287 in the period 2012 November - 2013 April. The data are gathered with the Focal Reducer Rozhen 2 - FoReRo2 on the 2-m RCC telescope at NAO Rozhen, Bulgaria. We derive photometry and polarization in R-band, as well as position angle (P.A.). There are indications for correlation between polarization and brightness in R-band. Furthermore, observed variation in P.A. corresponds to a rotation of the plane of polarization of 5.80 deg per day.



rate research

Read More

We explore the variability and cross-frequency correlation of the flux density and polarization of the blazar OJ287, using imaging at 43 GHz with the Very Long Baseline Array, as well as optical and near-infrared polarimetry. The polarization and flux density in both the optical waveband and the 43 GHz compact core increased by a small amount in late 2005, and increased significantly along with the near-IR polarization and flux density over the course of 10 days in early 2006. Furthermore, the values of the electric vector position angle (EVPA) at the three wavebands are similar. At 43 GHz, the EVPA of the blazar core is perpendicular to the flow of the jet, while the EVPAs of emerging superluminal knots are aligned parallel to the jet axis. The core polarization is that expected if shear aligns the magnetic field at the boundary between flows of disparate velocities within the jet. Using variations in flux density, percentage polarization, and EVPA, we model the inner jet as a spine-sheath system. The model jet contains a turbulent spine of half-width 1.2 degrees and maximum Lorentz factor of 16.5, a turbulent sheath with Lorentz factor of 5, and a boundary region of sheared field between the spine and sheath. Transverse shocks propagating along the fast, turbulent spine can explain the superluminal knots. The observed flux density and polarization variations are then compatible with changes in the direction of the inner jet caused by a temporary change in the position of the core if the spine contains wiggles owing to an instability. In addition, we can explain a stable offset of optical and near-IR percentage polarization by a steepening of spectral index with frequency, as supported by the data.
(Abridged) OJ287 is a BL Lac object that has shown double-peaked bursts at regular intervals of ~12 yr during the last ~40 yr. We analyse optical photopolarimetric monitoring data from 2005-2009, during which the latest double-peaked outburst occurred. The aim of this study is twofold: firstly, we aim to analyse variability patterns and statistical properties of the optical polarization light-curve. We find a strong preferred position angle in optical polarization. The preferred position angle can be explained by separating the jet emission into two components: an optical polarization core and chaotic jet emission. The optical polarization core is stable on time scales of years and can be explained as emission from an underlying quiescent jet component. The chaotic jet emission sometimes exhibits a circular movement in the Stokes plane. We interpret these events as a shock front moving forwards and backwards in the jet, swiping through a helical magnetic field. Secondly, we use our data to assess different binary black hole models proposed to explain the regularly appearing double-peaked bursts in OJ287. We compose a list of requirements a model has to fulfil. The list includes not only characteristics of the light-curve but also other properties of OJ287, such as the black hole mass and restrictions on accretion flow properties. We rate all existing models using this list and conclude that none of the models is able to explain all observations. We discuss possible new explanations and propose a new approach to understanding OJ287. We suggest that both the double-peaked bursts and the evolution of the optical polarization position angle could be explained as a sign of resonant accretion of magnetic field lines, a magnetic breathing of the disc.
Context. OJ287 is a quasar with a quasi-periodic optical light curve, with the periodicity observed for over 120 years. This has lead to a binary black hole model as a common explanation of the quasar. The radio jet of OJ287 has been observed for a shorter time of about 30 years. It has a complicated structure that varies dramatically in a few years time scale. Aims. Here we propose that this structure arises from a helical jet being observed from a small and varying viewing angle. The viewing angle variation is taken to be in tune with the binary orbital motion. Methods. We calculate the effect of the secondary black hole on the inner edge of the accretion disk of the primary using particle simulations. We presume that the axis of the helix is perpendicular to the disk. We then follow the jet motion on its helical path and project the jet to the sky plane. This projection is compared with observations both at mm waves and cm waves. Results. We find that this model reproduces the observations well if the changes in the axis of the conical helix propagate outwards with a relativistic speed of about 0.85c. In particular, this model explains at the same time the long-term optical brightness variations as varying Doppler beaming in a component close to the core, i.e. at parsec scale in real linear distance, while the mm and cm radio jet observations are explained as being due to jet wobble at much larger (100 parsec scale) distances from the core.
254 - B. Kern 2003
We have observed the optical pulse profile of PSR B0656+14 in 10 phase bins at a high signal-to-noise ratio, and have measured the linear polarization profile over 30% of the pulsar period with some significance. The pulse profile is double-peaked, with a bridge of emission between the two peaks, similar to gamma-ray profiles observed in other pulsars. There is no detectable unpulsed flux, to a 1-sigma limit of 16% of the pulse-averaged flux. The emission in the bridge is highly (~ 100%) polarized, with a position angle sweep in excellent agreement with the prediction of the Rotating Vector Model as determined from radio polarization observations. We are able to account for the gross features of the optical light curve (i.e., the phase separation of the peaks) using both polar cap and outer gap models. Using the polar cap model, we are also able to estimate the height of the optical emission regions.
An exhaustive analysis of 9-year optical R-band photopolarimetric data of the flat-spectrum radio quasar 3C279 from 2008 February 27 to 2017 May 25 is presented, alongside with multiwavelength observing campaigns performed during the flaring activity exhibited in 2009 February/March, 2011 June, 2014 March/April, 2015 June and 2017 February. In the R-band, this source showed the maximum brightness state of $13.68pm 0.11$ mag ($1.36pm0.20$ mJy) on 2017 March 02, and the lowest brightness state ever recorded of $18.20pm 0.87$ mag ($0.16pm0.03$ mJy) on 2010 June 17. During the entire period of observations, the polarization degree varied between $0.48pm0.17$% and $31.65pm0.77$% and the electric vector position angle exhibited large rotations between $82.98^circ pm0.92$ and $446.32^circ pm1.95$. Optical polarization data show that this source has a stable polarized component that varied from $sim$6% (before the 2009 flare) to $sim$13% after the flare. The overall behavior of our polarized variability data supports the scenario of jet precessions as responsible of the observed large rotations of the electric vector position angle. Discrete correlation function analysis show that the lags between gamma-rays and X-rays compared to the optical R-band fluxes are $Delta t sim$ 31 d and $1$ d in 2009. Lags were also found among gamma-rays compared with X-rays and radio of $Delta t sim$ 30 d and $43$ d in 2011, and among radio and optical-R band of $Delta t sim$ 10 d in 2014. A very intense flare in 2017 was observed in optical bands with a dramatic variation in the polarization degree (from $sim$ 6% to 20%) in 90 days without exhibiting flaring activity in other wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا