Do you want to publish a course? Click here

On Linear Codes over $mathbb{Z}_4+vmathbb{Z}_4$

141   0   0.0 ( 0 )
 Added by Gao Jian
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Linear codes are considered over the ring $mathbb{Z}_4+vmathbb{Z}_4$, where $v^2=v$. Gray weight, Gray maps for linear codes are defined and MacWilliams identity for the Gray weight enumerator is given. Self-dual codes, construction of Euclidean isodual codes, unimodular complex lattices, MDS codes and MGDS codes over $mathbb{Z}_4+vmathbb{Z}_4$ are studied. Cyclic codes and quadratic residue codes are also considered. Finally, some examples for illustrating the main work are given.



rate research

Read More

123 - Ping Li , Xuemei Guo , Shixin Zhu 2016
In this paper, we mainly study the theory of linear codes over the ring $R =mathbb{Z}_4+umathbb{Z}_4+vmathbb{Z}_4+uvmathbb{Z}_4$. By the Chinese Remainder Theorem, we have $R$ is isomorphic to the direct sum of four rings $mathbb{Z}_4$. We define a Gray map $Phi$ from $R^{n}$ to $mathbb{Z}_4^{4n}$, which is a distance preserving map. The Gray image of a cyclic code over $R^{n}$ is a linear code over $mathbb{Z}_4$. Furthermore, we study the MacWilliams identities of linear codes over $R$ and give the the generator polynomials of cyclic codes over $R$. Finally, we discuss some properties of MDS codes over $R$.
In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring $R=F_{q}+vF_{q}+v^{2}F_{q}$, where $v^{3}=v$, for $q$ odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over $R$. Further, we give bounds on the minimum distance of LCD codes over $F_q$ and extend these to codes over $R$.
We apply quantum Construction X on quasi-cyclic codes with large Hermitian hulls over $mathbb{F}_4$ and $mathbb{F}_9$ to derive good qubit and qutrit stabilizer codes, respectively. In several occasions we obtain quantum codes with stricly improved parameters than the current record. In numerous other occasions we obtain quantum codes with best-known performance. For the qutrit ones we supply a systematic construction to fill some gaps in the literature.
Quantum synchronizable codes are kinds of quantum error-correcting codes that can not only correct the effects of quantum noise on qubits but also the misalignment in block synchronization. This paper contributes to constructing two classes of quantum synchronizable codes by the cyclotomic classes of order two over $mathbb{Z}_{2q}$, whose synchronization capabilities can reach the upper bound under certain conditions. Moreover, the quantum synchronizable codes possess good error-correcting capability towards bit errors and phase errors.
Given $texttt{S}|texttt{R}$ a finite Galois extension of finite chain rings and $mathcal{B}$ an $texttt{S}$-linear code we define two Galois operators, the closure operator and the interior operator. We proof that a linear code is Galois invariant if and only if the row standard form of its generator matrix has all entries in the fixed ring by the Galois group and show a Galois correspondence in the class of $texttt{S}$-linear codes. As applications some improvements of upper and lower bounds for the rank of the restriction and trace code are given and some applications to $texttt{S}$-linear cyclic codes are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا