No Arabic abstract
Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using simple thought experiments, that quantum theory follows from decompositional equivalence together with Landauers principle. This demonstration raises within physics a question previously left to psychology: how do human - or any - observers agree about what constitutes a system of interest?
In this paper, a formulation, which is completely established on a quantum ground, is presented for basic contents of quantum electrodynamics (QED). This is done by moving away, from the fundamental level, the assumption that the spin space of bare photons should (effectively) possess the same properties as those of free photons observed experimentally. Within this formulation, bare photons with zero momentum can not be neglected when constructing the photon field; and an explicit expression for the related part of the photon field is derived. When a local gauge transformation is performed on the electron field, this expression predicts a change that turns out to be equal to what the gauge symmetry requires for the gauge field. This gives an explicit mechanism, by which the photon field may change under gauge transformations in QED.
General dynamic properties like controllability and simulability of spin systems, fermionic and bosonic systems are investigated in terms of symmetry. Symmetries may be due to the interaction topology or due to the structure and representation of the system and control Hamiltonians. In either case, they obviously entail constants of motion. Conversely, the absence of symmetry implies irreducibility and provides a convenient necessary condition for full controllability much easier to assess than the well-established Lie-algebra rank condition. We give a complete lattice of irreducible simple subalgebras of su(2^n) for up to n=15 qubits. It complements the symmetry condition by allowing for easy tests solving homogeneous linear equations to filter irreducible unitary representations of other candidate algebras of classical type as well as of exceptional types. --- The lattice of irreducible simple subalgebras given also determines mutual simulability of dynamic systems of spin or fermionic or bosonic nature. We illustrate how controlled quadratic fermionic (and bosonic) systems can be simulated by spin systems and in certain cases also vice versa.
Since the photon box gedanken experiments of several of the founding fathers of modern physics, considerable progress has been made in differentiating the quantum and classical worlds. In this pursuit, the cavity as an open quantum system has been indispensable. From the quantization of the atom and field within a superconducting cavity, a unique realm of EPR type entanglement has emerged. In this way, dynamical evolution of the system in the strong coupling regime is intimately tied with the coupling of an atom with a single resonant or non-resonant mode within the cavity. More specifically, the cavity can be prepared so that the atom is detected in a desired state. Here, the essentials of the strong coupling regime of Cavity Quantum Electrodynamics (QED) are reviewed for cavities tuned with a single atomic transition. A brief introduction of the systems is followed by an approach of the more striking effects, leading towards Ramsey Interferometry and Quantum Non-Demolition measurements as means for quantum gate protocol. Because the integrity of the atom and photon states is important for the advancement of quantum computation, a brief discussion of the decoherence problems is also presented. This document is meant to introduce the topic in a way that makes it easily accessible to those working in closely related areas of physics, and to highlight key applications and some basic questions concerning decoherence and the measurement problem.
Lorentz symmetry violation (LV) was recently proposed to be testable with a new method, in which the effect of the violation is described as a certain local interaction [R. Shaniv, et al, PRL 120, 103202 (2018)]. We revisit this LV effect in the paper and show that it is not only local, but it also represents a classical violation according to the recent quantum formulation of the Einstein equivalence principle (EEP). Based on a harmonically trapped spin-1/2 atomic system, we apply the results of table-top experiments testing LV effect to estimate the corresponding violation parameter in the quantum formulation of EEP. We find that the violation parameter is indeed very small, as expected by the earlier theoretical estimation.
Despite the rapid development of quantum computing these years, state-of-the-art quantum devices still contain only a very limited number of qubits. One possible way to execute more realistic algorithms in near-term quantum devices is to employ dynamic quantum circuits, in which measurements can happen during the circuit and their outcomes are used to control other parts of the circuit. This technique can help to significantly reduce the resources required to achieve a given accuracy of a quantum algorithm. However, since this type of quantum circuits are more flexible, their verification is much more challenging. In this paper, we give a formal definition of dynamic quantum circuits and then propose to characterise their functionality in terms of ensembles of linear operators. Based on this novel semantics, two dynamic quantum circuits are equivalent if they have the same functionality. We further propose and implement two decision diagram-based algorithms for checking the equivalence of dynamic quantum circuits. Experiments show that embedding classical logic into conventional quantum circuits does not incur significant time and space burden.