No Arabic abstract
About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich giants exist. A missing piece in this puzzle is the knowledge of the exact stage of evolution of these stars. Using low-and-high-resolution spectroscopic observations, we have undertaken a survey of lithium-rich giants in the Kepler field. In this letter, we report the finding of the first confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic analysis. The evolutionary timescales constrained by its mass suggest that Li-production most likely took place through non-canonical mixing at the RGB-tip, possibly during the helium flash.
In this work, the helium-enhancement (He-enhancement) in the lithium-rich (Li-rich) K-giant HD 77361 is investigated using the strengths of the MgH band and the MgI lines. The detailed abundance analysis and also the synthesis of the MgH band and the Mg I lines has been carried out for HD 77361. One would expect, within uncertainties, same Mg abundance from both the MgH and Mg I lines. But, we found that Mg abundance derived from MgH lines is significantly less than the abundance from Mg I lines, and this difference cannot be reconciled by changing the stellar parameters within the uncertainties, implying He enhancement in stars photosphere. The He enhancement in the atmospheres is estimated by using models of different He/H ratios so that both the lines, MgH as well as Mg I, return the same Mg abundance for the adopted models He/H ratio. We found He/H=0.4+/-0.1 as the value for HD 77361, the normal value of He/H=0.1. Knowing the amount of He-enhancement in the Li-rich giants is a strong clue for understanding the scenarios responsible for the Li and He enrichment. The analysis and results are discussed.
We investigate the properties of 1262 red giant stars with high photospheric abundances of lithium observed by the GALAH and Ktwo-HERMES surveys, and discuss them in the context of proposed mechanisms for lithium enrichment and re-depletion in giant stars. We confirm that Li-rich giants are rare, making up only 1.2 per cent of our giant star sample. We use stellar parameters from the third public data release from the GALAH survey and a Bayesian isochrone analysis to divide the sample into first-ascent red giant branch and red clump stars, and confirm these classifications using asteroseismic data from Ktwo. We find that red clump stars are 2.5 times as likely to be lithium-rich as red giant branch stars, in agreement with other recent work. The probability for a star to be lithium-rich is affected by a number of factors, though the causality in those correlations is not entirely clear. We show for the first time that primary and secondary red clump stars have distinctly different lithium enrichment patterns. The data set discussed here is large and heterogeneous in terms of evolutionary phase, metallicity, rotation rate and mass. We expect that if the various mechanisms that have been proposed for lithium enrichment in evolved stars are in fact active, they should all contribute to this sample of lithium-rich giants at some level.
In this letter we characterise IRAS12556-7731 as the first lithium-rich M-type giant. Based on its late spectral type and high lithium content, and because of its proximity in angular distance to the ChamaeleonII star-forming region, the star was misclassified as a young low-mass star in a previous work. Based on HARPS data, synthetic spectral modelling, and proper motions, we derive the astrophysical parameters and kinematics of the star and discuss its evolutionary status. This solar-mass red giant (Teff=3460+/-60K and log(g)=0.6+/-0.2) is characterised by a relatively fast rotation (v sin(i)~8km/s), slightly subsolar metallicity and a high-lithium abundance, A(Li)=2.4+/-0.2dex. We discuss IRAS12556-7731 within the context of other known lithium-rich K-type giants. Because it is close to the tip of the red giant branch, IRAS12556-7731 is the coolest lithium-rich giant known so far, and it is among the least massive and most luminous giants where enhancement of lithium has been detected. Among several possible explanations, we cannot preclude the possibility that the lithium enhancement and rapid rotation of the star were triggered by the engulfment of a brown dwarf or a planet.
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 +/- 0.1)% for the RGB, (1.6 +/- 1.1)% for the AGB, and (0.3 +/- 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.
Aims: We report the discovery of a young lithium rich giant, HD 16771, in the core-helium burning phase that does not seem to fit existing proposals of Li synthesis near the luminosity function bump or during He-core flash. We aim to understand the nature of Li enrichment in the atmosphere of HD 16771 by exploring various Li enhancement scenarios. Methods: We have collected high-resolution echelle spectra of HD 16771 and derived stellar parameters and chemical abundances for 27 elements by either line equivalent widths or synthetic spectrum analyses. Results: HD 16771 is a Li-rich (log(n(Li))=+2.67+/-0.10 dex) intermediate mass giant star (M=2.4+/-0.1 Msun) with age=0.76+/-0.13 Gyr and located at the red giant clump. Kinematics and chemical compositions are consistent with HD 16771 being a member of the Galactic thin disk population. The non-detection of 6Li(< 3%), a low carbon isotopic ratio (12C/13C=12+/-2), and the slow rotation (vsini=2.8 km/s) all suggest that lithium might have been synthesized in this star. On the contrary, HD 16771 with a mass of 2.4 Msun has no chance of encountering luminosity function bump and He-core flash where the possibility of fast deep-mixing for Li enrichment in K giants has been suggested previously. Conclusions: Based of the evolutionary status of this star, we discuss the possibility that 7Li synthesis in HD 16771 is triggered by the engulfment of close-in planet(s) during the RGB phase.