Do you want to publish a course? Click here

IRAS12556-7731: a chamaeleonic lithium-rich M-giant

117   0   0.0 ( 0 )
 Added by Juan M. Alcala
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter we characterise IRAS12556-7731 as the first lithium-rich M-type giant. Based on its late spectral type and high lithium content, and because of its proximity in angular distance to the ChamaeleonII star-forming region, the star was misclassified as a young low-mass star in a previous work. Based on HARPS data, synthetic spectral modelling, and proper motions, we derive the astrophysical parameters and kinematics of the star and discuss its evolutionary status. This solar-mass red giant (Teff=3460+/-60K and log(g)=0.6+/-0.2) is characterised by a relatively fast rotation (v sin(i)~8km/s), slightly subsolar metallicity and a high-lithium abundance, A(Li)=2.4+/-0.2dex. We discuss IRAS12556-7731 within the context of other known lithium-rich K-type giants. Because it is close to the tip of the red giant branch, IRAS12556-7731 is the coolest lithium-rich giant known so far, and it is among the least massive and most luminous giants where enhancement of lithium has been detected. Among several possible explanations, we cannot preclude the possibility that the lithium enhancement and rapid rotation of the star were triggered by the engulfment of a brown dwarf or a planet.



rate research

Read More

We investigate the properties of 1262 red giant stars with high photospheric abundances of lithium observed by the GALAH and Ktwo-HERMES surveys, and discuss them in the context of proposed mechanisms for lithium enrichment and re-depletion in giant stars. We confirm that Li-rich giants are rare, making up only 1.2 per cent of our giant star sample. We use stellar parameters from the third public data release from the GALAH survey and a Bayesian isochrone analysis to divide the sample into first-ascent red giant branch and red clump stars, and confirm these classifications using asteroseismic data from Ktwo. We find that red clump stars are 2.5 times as likely to be lithium-rich as red giant branch stars, in agreement with other recent work. The probability for a star to be lithium-rich is affected by a number of factors, though the causality in those correlations is not entirely clear. We show for the first time that primary and secondary red clump stars have distinctly different lithium enrichment patterns. The data set discussed here is large and heterogeneous in terms of evolutionary phase, metallicity, rotation rate and mass. We expect that if the various mechanisms that have been proposed for lithium enrichment in evolved stars are in fact active, they should all contribute to this sample of lithium-rich giants at some level.
Aims: We report the discovery of a young lithium rich giant, HD 16771, in the core-helium burning phase that does not seem to fit existing proposals of Li synthesis near the luminosity function bump or during He-core flash. We aim to understand the nature of Li enrichment in the atmosphere of HD 16771 by exploring various Li enhancement scenarios. Methods: We have collected high-resolution echelle spectra of HD 16771 and derived stellar parameters and chemical abundances for 27 elements by either line equivalent widths or synthetic spectrum analyses. Results: HD 16771 is a Li-rich (log(n(Li))=+2.67+/-0.10 dex) intermediate mass giant star (M=2.4+/-0.1 Msun) with age=0.76+/-0.13 Gyr and located at the red giant clump. Kinematics and chemical compositions are consistent with HD 16771 being a member of the Galactic thin disk population. The non-detection of 6Li(< 3%), a low carbon isotopic ratio (12C/13C=12+/-2), and the slow rotation (vsini=2.8 km/s) all suggest that lithium might have been synthesized in this star. On the contrary, HD 16771 with a mass of 2.4 Msun has no chance of encountering luminosity function bump and He-core flash where the possibility of fast deep-mixing for Li enrichment in K giants has been suggested previously. Conclusions: Based of the evolutionary status of this star, we discuss the possibility that 7Li synthesis in HD 16771 is triggered by the engulfment of close-in planet(s) during the RGB phase.
In this work, the helium-enhancement (He-enhancement) in the lithium-rich (Li-rich) K-giant HD 77361 is investigated using the strengths of the MgH band and the MgI lines. The detailed abundance analysis and also the synthesis of the MgH band and the Mg I lines has been carried out for HD 77361. One would expect, within uncertainties, same Mg abundance from both the MgH and Mg I lines. But, we found that Mg abundance derived from MgH lines is significantly less than the abundance from Mg I lines, and this difference cannot be reconciled by changing the stellar parameters within the uncertainties, implying He enhancement in stars photosphere. The He enhancement in the atmospheres is estimated by using models of different He/H ratios so that both the lines, MgH as well as Mg I, return the same Mg abundance for the adopted models He/H ratio. We found He/H=0.4+/-0.1 as the value for HD 77361, the normal value of He/H=0.1. Knowing the amount of He-enhancement in the Li-rich giants is a strong clue for understanding the scenarios responsible for the Li and He enrichment. The analysis and results are discussed.
About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich giants exist. A missing piece in this puzzle is the knowledge of the exact stage of evolution of these stars. Using low-and-high-resolution spectroscopic observations, we have undertaken a survey of lithium-rich giants in the Kepler field. In this letter, we report the finding of the first confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic analysis. The evolutionary timescales constrained by its mass suggest that Li-production most likely took place through non-canonical mixing at the RGB-tip, possibly during the helium flash.
Classical Cepheids (DCEPs) are important astrophysical objects not only as standard candles in the determination of the cosmic distance ladder, but also as a testbed for the stellar evolution theory, thanks to the strict connection between their pulsation [period(s), amplitudes] and stellar (luminosity, mass, effective temperature, metallicity) parameters. We aim at unveiling the nature of the Galactic DCEP V363 Cas and other DCEPs showing cosmic abundances of lithium in their atmospheres. We have collected three epochs high-resolution spectroscopy for V363 Cas with HARPS-N@TNG. Accurate stellar parameters: effective temperatures, gravities, micro-turbulences, radial velocities, and metal abundances were measured for this star. We detected a lithium abundance of A(Li)=2.86+-0.10 dex, along with iron, carbon and oxygen abundances of [Fe/H]=-0.30+-0.12 dex, [C/H]=-0.06+-0.15 dex and [O/H]=0.00+-0.12 dex. V363 Cas is the fifth among the Milky Way DCEPs to exhibit a Li-rich feature. An analysis of historical time-series spanning a hundred year interval shows that the period of V363 Cas is increasing, with a sharp acceleration after HJD=2453000. This is a clear hint of first crossing of the instability strip. Our results favour the scenario in which the five Galactic Li-rich DCEPs are first-crossing the instability strip having had slowly-rotating progenitors during their main sequence phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا