No Arabic abstract
In this paper, we are concerned with obtaining distribution-free concentration inequalities for mixture of independent Bernoulli variables that incorporate a notion of variance. Missing mass is the total probability mass associated to the outcomes that have not been seen in a given sample which is an important quantity that connects density estimates obtained from a sample to the population for discrete distributions. Therefore, we are specifically motivated to apply our method to study the concentration of missing mass - which can be expressed as a mixture of Bernoulli - in a novel way. We not only derive - for the first time - Bernstein-like large deviation bounds for the missing mass whose exponents behave almost linearly with respect to deviation size, but also sharpen McAllester and Ortiz (2003) and Berend and Kontorovich (2013) for large sample sizes in the case of small deviations which is the most interesting case in learning theory. In the meantime, our approach shows that the heterogeneity issue introduced in McAllester and Ortiz (2003) is resolvable in the case of missing mass in the sense that one can use standard inequalities but it may not lead to strong results. Thus, we postulate that our results are general and can be applied to provide potentially sharp Bernstein-like bounds under some constraints.
We are concerned with obtaining novel concentration inequalities for the missing mass, i.e. the total probability mass of the outcomes not observed in the sample. We not only derive - for the first time - distribution-free Bernstein-like deviation bounds with sublinear exponents in deviation size for missing mass, but also improve the results of McAllester and Ortiz (2003) andBerend and Kontorovich (2013, 2012) for small deviations which is the most interesting case in learning theory. It is known that the majority of standard inequalities cannot be directly used to analyze heterogeneous sums i.e. sums whose terms have large difference in magnitude. Our generic and intuitive approach shows that the heterogeneity issue introduced in McAllester and Ortiz (2003) is resolvable at least in the case of missing mass via regulating the terms using our novel thresholding technique.
In the last two decades, unsupervised latent variable models---blind source separation (BSS) especially---have enjoyed a strong reputation for the interpretable features they produce. Seldom do these models combine the rich diversity of information available in multiple datasets. Multidatasets, on the other hand, yield joint solutions otherwise unavailable in isolation, with a potential for pivotal insights into complex systems. To take advantage of the complex multidimensional subspace structures that capture underlying modes of shared and unique variability across and within datasets, we present a direct, principled approach to multidataset combination. We design a new method called multidataset independent subspace analysis (MISA) that leverages joint information from multiple heterogeneous datasets in a flexible and synergistic fashion. Methodological innovations exploiting the Kotz distribution for subspace modeling in conjunction with a novel combinatorial optimization for evasion of local minima enable MISA to produce a robust generalization of independent component analysis (ICA), independent vector analysis (IVA), and independent subspace analysis (ISA) in a single unified model. We highlight the utility of MISA for multimodal information fusion, including sample-poor regimes and low signal-to-noise ratio scenarios, promoting novel applications in both unimodal and multimodal brain imaging data.
When observations are organized into groups where commonalties exist amongst them, the dependent random measures can be an ideal choice for modeling. One of the propositions of the dependent random measures is that the atoms of the posterior distribution are shared amongst groups, and hence groups can borrow information from each other. When normalized dependent random measures prior with independent increments are applied, we can derive appropriate exchangeable probability partition function (EPPF), and subsequently also deduce its inference algorithm given any mixture model likelihood. We provide all necessary derivation and solution to this framework. For demonstration, we used mixture of Gaussians likelihood in combination with a dependent structure constructed by linear combinations of CRMs. Our experiments show superior performance when using this framework, where the inferred values including the mixing weights and the number of clusters both respond appropriately to the number of completely random measure used.
It is shown that functions defined on ${0,1,...,r-1}^n$ satisfying certain conditions of bounded differences that guarantee sub-Gaussian tail behavior also satisfy a much stronger ``local sub-Gaussian property. For self-bounding and configuration functions we derive analogous locally subexponential behavior. The key tool is Talagrands [Ann. Probab. 22 (1994) 1576--1587] variance inequality for functions defined on the binary hypercube which we extend to functions of uniformly distributed random variables defined on ${0,1,...,r-1}^n$ for $rge2$.
Novel concentration inequalities are obtained for the missing mass, i.e. the total probability mass of the outcomes not observed in the sample. We derive distribution-free deviation bounds with sublinear exponents in deviation size for missing mass and improve the results of Berend and Kontorovich (2013) and Yari Saeed Khanloo and Haffari (2015) for small deviations which is the most important case in learning theory.