Do you want to publish a course? Click here

Comparative study of non-Markovianity measures in exactly solvable one and two qubit models

96   0   0.0 ( 0 )
 Added by Carole Addis
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present a detailed critical study of several recently proposed non-Markovianity measures. We analyse their properties for single qubit and two-qubit systems in both pure-dephasing and dissipative scenarios. More specifically we investigate and compare their computability, their physical meaning, their Markovian to non-Markovian crossover, and their additivity properties with respect to the number of qubits. The bottom-up approach that we pursue is aimed at identifying similarities and differences in the behavior of non-Markovianity indicators in several paradigmatic open system models. This in turn allows us to infer the leading traits of the variegated phenomenon known as non-Markovian dynamics and, possibly, to grasp its physical essence.



rate research

Read More

Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-dimensional, $mathcal{PT}$ potentials for a non-relativistic particle confined in a circular geometry. We show that the $mathcal{PT}$ symmetry threshold can be tuned by introducing a second gain-loss potential or its hermitian counterpart. Our results explicitly demonstrate that $mathcal{PT}$ breaking in two dimensions has a rich phase diagram, with multiple re-entrant $mathcal{PT}$ symmetric phases.
We consider two recently proposed measures of non-Markovianity applied to a particular quantum process describing the dynamics of a driven qubit in a structured reservoir. The motivation of this study is twofold: on one hand, we study the differences and analogies of the non-Markovianity measures and on the other hand, we investigate the effect of the driving force on the dissipative dynamics of the qubit. In particular we ask if the drive introduces new channels for energy and/or information transfer between the system and the environment, or amplifies existing ones. We show under which conditions the presence of the drive slows down the inevitable loss of quantum properties of the qubit.
Two coupled two-level systems placed under external time-dependent magnetic fields are modeled by a general Hamiltonian endowed with a symmetry that enables us to reduce the total dynamics into two independent two-dimensional sub-dynamics. Each of the sub-dynamics is shown to be brought into an exactly solvable form by appropriately engineering the magnetic fields and thus we obtain an exact time evolution of the compound system. Several physically relevant and interesting quantities are evaluated exactly to disclose intriguing phenomena in such a system.
The interaction between an atom and a one mode external driving field is an ubiquitous problem in many branches of physics and is often modeled using the Rabi Hamiltonian. In this paper we present a series of analytically solvable Hamiltonians that approximate the Rabi Hamiltonian and compare our results to the Jaynes-Cummings model which neglects the so-called counter-rotating term in the Rabi Hamiltonian. Through a unitary transformation that diagonlizes the Jaynes-Cummings model, we transform the counter-rotating term into separate terms representing several different physical processes. By keeping only certain terms, we can achieve an excellent approximation to the exact dynamics within specified parameter ranges.
Some results for two distinct but complementary exactly solvable algebraic models for pairing in atomic nuclei are presented: 1) binding energy predictions for isotopic chains of nuclei based on an extended pairing model that includes multi-pair excitations; and 2) fine structure effects among excited $0^+$ states in $N approx Z$ nuclei that track with the proton-neutron ($pn$) and like-particle isovector pairing interactions as realized within an algebraic $sp(4)$ shell model. The results show that these models can be used to reproduce significant ranges of known experimental data, and in so doing, confirm their power to predict pairing-dominated phenomena in domains where data is unavailable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا