Do you want to publish a course? Click here

Near-Infrared Spectral Monitoring of Plutos Ices II: Recent Decline of CO and N$_2$ Ice Absorptions

137   0   0.0 ( 0 )
 Added by Will Grundy
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

IRTF/SpeX observations of Plutos near-infrared reflectance spectrum during 2013 show vibrational absorption features of CO and N$_2$ ices at 1.58 and 2.15 {mu}m, respectively, that are weaker than had been observed during the preceding decade. To reconcile declining volatile ice absorptions with a lack of decline in Plutos atmospheric pressure, we suggest these ices could be getting harder to see because of increasing scattering by small CH$_4$ crystals, rather than because they are disappearing from the observed hemisphere.



rate research

Read More

We report results from monitoring Plutos 0.8 to 2.4 {mu}m reflectance spectrum with IRTF/SpeX on 65 nights over the dozen years from 2001 to 2012. The spectra show vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Plutos surface. These absorptions are modulated by the planets 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Plutos anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90{deg} from the longitude of maximum CO and N2 absorption. In addition to the diurnal variations, the spectra show longer term trends. On decadal timescales, Plutos stronger CH4 absorption bands have been getting deeper, while the amplitude of their diurnal variation is diminishing, consistent with additional CH4 absorption at high northern latitudes rotating into view as the sub-Earth latitude moves north (as defined by the systems angular momentum vector). Unlike the CH4 absorptions, Plutos CO and N2 absorptions appear to be declining over time, suggesting more equatorial or southerly distributions of those species. Comparisons of geometrically-matched pairs of observations favor geometric explanations for the observed secular changes in CO and N2 absorption, although seasonal volatile transport could be at least partly responsible. The case for a volatile transport contribution to the secular evolution looks strongest for CH4 ice, despite it being the least volatile of the three ices.
We discuss in a thermodynamic, geologically empirical way the long-term nature of the stable majority ices that could be present in Kuiper Belt Object 2014 MU69 after its 4.6 Gyr residence in the EKB as a cold classical object. Considering the stability versus sublimation into vacuum for the suite of ices commonly found on comets, Centaurs, and KBOs at the average ~40K sunlit surface temperature of MU69 over Myr to Gyr, we find only 3 common ices that are truly refractory: HCN, CH3OH, and H2O (in order of increasing stability). NH3 and H2CO ices are marginally stable and may be removed by any positive temperature excursions in the EKB, as produced every 1e8 - 1e9 yrs by nearby supernovae and passing O/B stars. To date the NH team has reported the presence of abundant CH3OH and evidence for H2O on MU69s surface (Lisse et al. 2017, Grundy et al. 2020). NH3 has been searched for, but not found. We predict that future absorption feature detections will be due to an HCN or poly-H2CO based species. Consideration of the conditions present in the EKB region during the formation era of MU69 lead us to infer that it formed in the dark, in an optically thick mid-plane, unable to see the nascent, variable, highly luminous Young Stellar Object-TTauri Sun, and that KBOs contain HCN and CH3OH ice phases in addition to the H2O ice phases found in their Short Period comet descendants. Finally, when we apply our ice thermal stability analysis to bodies/populations related to MU69, we find that methanol ice may be ubiquitous in the outer solar system; that if Pluto is not a fully differentiated body, then it must have gained its hypervolatile ices from proto-planetary disk sources in the first few Myr of the solar systems existence; and that hypervolatile rich, highly primordial comet C/2016 R2 was placed onto an Oort Cloud orbit on a similar timescale.
Diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO$_2$ ice at low temperatures (T=11--23~K) using CO$_2$ longitudinal optical (LO) phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Ficks second law and find the temperature dependent diffusion coefficients are well fit by an Arrhenius equation giving a diffusion barrier of 300 $pm$ 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO$_2$ along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO$_2$ ices deposited at 11-50 K by temperature-programmed desorption (TPD) and find that the desorption barrier ranges from 1240 $pm$ 90 K to 1410 $pm$ 70 K depending on the CO$_2$ deposition temperature and resultant ice porosity. The measured CO-CO$_2$ desorption barriers demonstrate that CO binds equally well to CO$_2$ and H$_2$O ices when both are compact. The CO-CO$_2$ diffusion-desorption barrier ratio ranges from 0.21-0.24 dependent on the binding environment during diffusion. The diffusion-desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.
CO$_2$ ice is an important reservoir of carbon and oxygen in star and planet forming regions. Together with water and CO, CO$_2$ sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO$_2$ ice spectroscopy is a prerequisite to characterize CO$_2$ interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO$_2$ longitudinal optical (LO) phonon mode in pure CO$_2$ ice and in CO$_2$ ice mixtures with H$_2$O, CO, O$_2$ components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of JWST, this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.
Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have yielded a detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto, providing a strong confirmation of the presence of CO, and the first observation of HCN, in Plutos atmosphere. The CO and HCN lines probe Plutos atmosphere up to ~450 km and ~900 km altitude, respectively. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515+/-40 ppm for a 12 ubar surface pressure (ii) clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70+/-2 K at 300 km, in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5x10-5 above 450 km and a value of 4x10-5 near 800 km. The large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to the slow kinetics of condensation at the low pressure and temperature conditions of Plutos upper atmosphere. HCN is also present in the bottom ~100 km of the atmosphere, with a 10-8 - 10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6+/-0.4)x10^14 cm-2, suggesting a surface-referred net production rate of ~2x10^7 cm-2s-1. Although HCN rotational line cooling affects Plutos atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmospheres ~70 K temperature. We finally report an upper limit on the HC3N column density (< 2x10^13 cm-2) and on the HC15N / HC14N ratio (< 1/125).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا