Do you want to publish a course? Click here

Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

242   0   0.0 ( 0 )
 Added by Qian Yue
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The China Dark Matter Experiment (CDEX) is located at the China Jinping underground laboratory (CJPL) and aims to directly detect the WIMP flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (<10^-2 events kg-1 day-1 keV-1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of CDEX-10 experiment, 0.1 cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible.



rate research

Read More

The China Dark Matter Experiment (CDEX) is a low background experiment at China Jinping Underground Laboratory (CJPL) designed to directly detect dark matter with a high-purity Germanium (HPGe) detector. In the second phase CDEX-10 with a 10 kg Germanium array detector system, the liquid argon (LAr) anti-compton active shielding and cooling system is proposed. For purpose of studying the properties of LAr detector, a prototype with an active volume of 7 liters of liquid argon was built and operated. The photoelectron yields, as a critically important parameter for the prototype detector, have been measured to be 0.051-0.079 p.e./keV for 662 keV Gamma lines at different positions. The good agreement between the experimental and simulation results has provided a quite reasonable understanding and determination of the important parameters such as the Surviving Fraction of the Ar2 excimers, the absorption length for 128 nm photons in liquid argon, the reflectivity of Teflon and so on.
In the Fall of 2017, two photon detector designs for the Deep Underground Neutrino Experiment (DUNE) Far Detector were installed and tested in the TallBo liquid argon (LAr) cryostat at the Proton Assembly (PAB) facility, Fermilab. The designs include two light bars developed at Indiana University and a photon detector based on the ARAPUCA light trap engineered by Colorado State University and Fermilab. The performance of these devices is determined by analyzing 8 weeks of cosmic ray data. The current paper focuses solely on the ARAPUCA device as the performance of the light bars will be reported separately. The paper briefly describes the ARAPUCA concept, the TallBo setup, and focuses on data analysis and results.
Particle detectors based on liquid argon (LAr) have recently become recognized as an extremely attractive technology for the direct detection of dark matter as well as the measurement of coherent elastic neutrino-nucleus scattering (CE$ u$NS). The Chinese argon group at Institute of High Energy Physics has been studying the LAr detector technology and a LAr detector has been operating steadily. A program of using a dual phase LAr detector to measure the CE$ u$NS at Taishang Nuclear Power Plant has been proposed and the R&D work is ongoing. Considering the requirements of ultra-low radio-purity and high photon collection efficiency, SiPMs will be a good choice and will be used in the detector. In this proceeding, an introduction of the LAr detector and the measurement results of SiPM array at LAr temperature will be presented.
90 - R. Tayloe 2017
The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the $N^2$-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.
We report on the preparation of and calibration measurements with a $^{83mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of $^{83mathrm{m}}$Kr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9$%$ at the total $^{83mathrm{m}}$Kr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keV
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا