Do you want to publish a course? Click here

The CENNS-10 Liquid Argon Detector to measure CEvNS at the Spallation Neutron Source

91   0   0.0 ( 0 )
 Added by Rex Tayloe
 Publication date 2017
  fields Physics
and research's language is English
 Authors R. Tayloe




Ask ChatGPT about the research

The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the $N^2$-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.



rate research

Read More

We report on the preparation of and calibration measurements with a $^{83mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of $^{83mathrm{m}}$Kr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9$%$ at the total $^{83mathrm{m}}$Kr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keV
84 - D. Akimov , J.B. Albert , P. An 2018
The primary goal of the COHERENT collaboration is to measure and study coherent elastic neutrino-nucleus scattering (CEvNS) using the high-power, few-tens-of-MeV, pulsed source of neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The COHERENT collaboration reported the first detection of CEvNS [Akimov:2017ade] using a CsI[Na] detector. At present the collaboration is deploying four detector technologies: a CsI[Na] scintillating crystal, p-type point-contact germanium detectors, single-phase liquid argon, and NaI[Tl] crystals. All detectors are located in the neutron-quiet basement of the SNS target building at distances 20-30 m from the SNS neutrino source. The simultaneous measurement in all four COHERENT detector subsystems will test the $N^2$ dependence of the cross section and search for new physics. In addition, COHERENT is measuring neutrino-induced neutrons from charged- and neutral-current neutrino interactions on nuclei in shielding materials, which represent a non-negligible background for CEvNS as well as being of intrinsic interest. The Collaboration is planning as well to look for charged-current interactions of relevance to supernova and weak-interaction physics. This document describes concisely the COHERENT physics motivations, sensitivity, and next plans for measurements at the SNS to be accomplished on a few-year timescale.
The COHERENT collaborations primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.
Particle detectors based on liquid argon (LAr) have recently become recognized as an extremely attractive technology for the direct detection of dark matter as well as the measurement of coherent elastic neutrino-nucleus scattering (CE$ u$NS). The Chinese argon group at Institute of High Energy Physics has been studying the LAr detector technology and a LAr detector has been operating steadily. A program of using a dual phase LAr detector to measure the CE$ u$NS at Taishang Nuclear Power Plant has been proposed and the R&D work is ongoing. Considering the requirements of ultra-low radio-purity and high photon collection efficiency, SiPMs will be a good choice and will be used in the detector. In this proceeding, an introduction of the LAr detector and the measurement results of SiPM array at LAr temperature will be presented.
The China Dark Matter Experiment (CDEX) is a low background experiment at China Jinping Underground Laboratory (CJPL) designed to directly detect dark matter with a high-purity Germanium (HPGe) detector. In the second phase CDEX-10 with a 10 kg Germanium array detector system, the liquid argon (LAr) anti-compton active shielding and cooling system is proposed. For purpose of studying the properties of LAr detector, a prototype with an active volume of 7 liters of liquid argon was built and operated. The photoelectron yields, as a critically important parameter for the prototype detector, have been measured to be 0.051-0.079 p.e./keV for 662 keV Gamma lines at different positions. The good agreement between the experimental and simulation results has provided a quite reasonable understanding and determination of the important parameters such as the Surviving Fraction of the Ar2 excimers, the absorption length for 128 nm photons in liquid argon, the reflectivity of Teflon and so on.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا