Do you want to publish a course? Click here

Interstellar Silicate Dust in the z=0.685 Absorber Toward TXS 0218+357

188   0   0.0 ( 0 )
 Added by Monique Aller
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of interstellar silicate dust in the z_abs=0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data we detect the 10 micron silicate absorption feature with a detection significance of 10.7-sigma. We fit laboratory-derived silicate dust profile templates obtained from literature to the observed 10 micron absorption feature, and find that the best single-mineral fit is obtained using an amorphous olivine template with a measured peak optical depth of tau_10=0.49+/-0.02, which rises to tau_10~0.67+/-0.04 if the covering factor is taken into account. We also detected the 18 micron silicate absorption feature in our data with a >3-sigma significance. Due to the proximity of the 18 micron absorption feature to the edge of our covered spectral range, and associated uncertainty about the shape of the quasar continuum normalization near 18 micron, we do not independently fit this feature. We find, however, that the shape and depth of the 18 micron silicate absorption are well-matched to the amorphous olivine template prediction, given the optical depth inferred for the 10 micron feature. The measured 10 micron peak optical depth in this absorber is significantly higher than those found in previously studied quasar absorption systems. The reddening, 21-cm absorption, and velocity spread of Mg II are not outliers relative to other studied absorption systems, however. This high optical depth may be evidence for variations in dust grain properties in the ISM between this and the previously studied high redshift galaxies.



rate research

Read More

260 - A. Coupeaud , K. Demyk , C. Meny 2011
Cold dust grains emission in the FIR/submm is usually expressed as a modified black body law in which the dust mass absorption coefficient (MAC), is described with a temperature- and wavelength-independent emissivity spectral index, beta. However, numerous data from space and balloon-born missions and recently from Herschel and Planck show that dust emission is not well understood, as revealed by the observed anti-correlation of beta with the grain temperature. In order to give astronomers the necessary data to interpret FIR/submm observations, we synthesised analogues of interstellar amorphous and crystalline silicate grains, rich in Mg and Ca, and having stiochiometry of olivine and pyroxene and measured their MAC, in the 100-1000/1500 mum range for grain temperatures varying from 300 to 10 K. We find that the grain MAC decreases when the grain temperature decreases and that the local spectral index, beta, defined as the slope of the MAC curve, is anti-correlated with the grain temperature. These variations, which are not observed in the crystallised samples, are related to the amorphous nature of the samples. In addition, the spectral shape of the MAC is complex: at short wavelengths (lambda < 500/700 mum), beta is in the range 1.6 - 2.1 for all grain temperature and grain composition whereas at longer wavelengths (lambda > 500/700 mum), beta < 2 for samples with a pyroxene stoichiometry and beta > 2 for samples with an olivine stoichiometry. Hence, the simplifying asymptotic expression based on a single temperature- and wavelength-independent spectral index used by astronomers is not appropriate to describe the dust MAC and thus the dust emission, and may induce significant errors on the derived parameters such as the dust mass and the dust physical and chemical properties. Instead, dust emission models should use the dust MAC as a function of wavelength and temperature.
We analyze relative abundances and ionization conditions in a strong absorption system at z=6.84, seen in the spectrum of the z=7.54 background quasar ULAS J134208.10+092838.61. Singly ionized C, Si, Fe, Mg, and Al measurements are consistent with a warm neutral medium that is metal-poor but not chemically pristine. Firm non-detections of C IV and Si IV imply that any warm ionized phase of the IGM or CGM has not yet been enriched past the ultra-metal-poor regime (<0.001Z_{solar}), unlike lower redshift DLAs where these lines are nearly ubiquitous. Relative abundances of the heavy elements 794 Myr after the Big Bang resemble those of metal-poor damped Lyman Alpha systems at intermediate redshift and Milky Way halo stars, and show no evidence of enhanced [alpha/Fe], [C/Fe] or other signatures of yields dominated by massive stars. A detection of the CII* fine structure line reveals local sources of excitation from heating, beyond the level of photo-excitation supplied by the CMB. We estimate the total and [CII] cooling rates, balancing against ISM heating sources to develop an heuristic two-phase model of the neutral medium. The implied heating requires a surface density of star formation slightly exceeding that of the Milky Way but not at the level of a strong starburst. For a typical (assumed) NHI=10^{20.6}, an abundance of [Fe/H]=-2.2 matches the columns of species in the neutral phase. To remain undetected in C IV, a warm ionized phase would either need much lower [C/H]<-4.2 over an absorption path of 1 kpc, or else a very small absorption path (a few pc). While still speculative, these results suggest a significant reduction in heavy element enrichment outside of neutral star forming regions of the ISM, as would be expected in early stages of galactic chemical evolution.
We report the detection and successful modeling of the unusual 9.7mum Si--O stretching silicate emission feature in the type 1 (i.e. face-on) LINER nucleus of M81. Using the Infrared Spectrograph (IRS) instrument on Spitzer, we determine the feature in the central 230 pc of M81 to be in strong emission, with a peak at ~10.5mum. This feature is strikingly different in character from the absorption feature of the galactic interstellar medium, and from the silicate absorption or weak emission features typical of galaxies with active star formation. We successfully model the high signal-to-noise ratio IRS spectra with porous silicate dust using laboratory-acquired mineral spectra. We find that the most probable fit uses micron-sized, porous grains of amorphous silicate and graphite. In addition to silicate dust, there is weak PAH emission present (particularly at 11.3mum, arising from the C--H out-of-plane bending vibration of relatively large PAHs of ~500--1000 C atoms) whose character reflects the low-excitation AGN environment, with some evidence that small PAHs of ~100--200 C atoms (responsible for the 7.7mum C--C stretching band) in the immediate vicinity of the nucleus have been preferentially destroyed. (abstract continues)
Silicate carbon stars show the 10 micron silicate emission, despite their carbon-rich photospheres. They are considered to have circumbinary or circum-companion disks, which serve as a reservoir of oxygen-rich material shed by mass loss in the past. We present N-band spectro-interferometric observations of the silicate carbon star BM Gem using MIDI at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the spatial distribution of oxygen-rich dust with high spatial resolution. BM Gem was observed with VLTI/MIDI at 44--62 m baselines using the UT2-UT3 and UT3-UT4 baseline configurations. The N-band visibilities observed for BM Gem show a steep decrease from 8 to ~10 micron and a gradual increase longward of ~10 micron, reflecting the optically thin silicate emission feature emanating from sub-micron-sized amorphous silicate grains. The differential phases obtained at baselines of ~44--46 m show significant non-zero values (~ -70 degrees) in the central part of the silicate emission feature between ~9 and 11 micron, revealing a photocenter shift and the asymmetric nature of the silicate emitting region. The observed N-band visibilities and differential phases can be fairly explained by a simple geometrical model in which the unresolved star is surrounded by a ring with azimuthal brightness modulation. The best-fit model is characterized by a broad ring (~70 mas across at 10 micron) with a bright region which is offset from the unresolved star by ~20 mas at a position angle of ~280 degrees. This model can be interpreted as a system with a circum-companion disk and is consistent with the spectroscopic signatures of an accretion disk around an unseen companion recently discovered in the violet spectrum of BM Gem.
547 - A. D. Goulding 2012
We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona-fide Compton-thick (N_H > 1.5 x 10^24 cm^-2) AGN with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at lambda~9.7um in archival low-resolution (R~57-127) Spitzer Infrared Spectrograph (IRS) spectroscopy, and show that only a minority (~45%) of nearby Compton-thick AGN have strong Si-absorption features (S_9.7 = ln(f_{int}/f_{obs}) > 0.5) which would indicate significant dust attenuation. The majority (~60%) are star-formation dominated (AGN:SB<0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission-lines are optically-extinguished. Those Compton-thick AGN hosted in low-inclination angle galaxies exhibit a narrow-range in Si-absorption (S_9.7 ~ 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies; dust-lanes; galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا