Do you want to publish a course? Click here

Cavity-stimulated Raman emission from a single quantum dot spin

154   0   0.0 ( 0 )
 Added by Timothy Sweeney
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid state quantum emitters have shown strong potential for applications in quantum information, but spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity-quantum dot system by demonstrating cavity-stimulated Raman spin flip emission. This process avoids populating the excited state of the emitter and generates a photon that is Raman shifted from the laser and enhanced by the cavity. The emission is spectrally narrow and tunable over a range of at least 125 GHz, which is two orders of magnitude greater than the natural linewidth. We obtain the regime in which the Raman emission is spin-dependent, which couples the photon to a long-lived electron spin qubit. This process can enable an efficient, tunable source of indistinguishable photons and deterministic entanglement of distant spin qubits in a photonic crystal quantum network.



rate research

Read More

We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures. We also show that the cavity selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation. Our results pave the way towards photon-mediated many-body interactions between solid-state quantum emitters in a nanophotonic platform.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We find conditions for population inversion in coherently pumped and incoherently pumped quantum dot. We show that squeezing in the output for two two photon laser is not visible using coherent as well as incoherent pump. We discuss effect of phonon coupling using recently developed polaron transformed master equation at low temperatures. We also propose scheme for generating squeezed state of field using four wave mixing.
264 - K. H. Madsen , S. Ates , J. Liu 2014
We demonstrate a single-photon collection efficiency of $(44.3pm2.1)%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4pm5)%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.
162 - K. H. Madsen , P. Lodahl 2012
We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes-Cummings model, while systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to coupling of other exciton lines to the cavity and interference of different propagation paths towards the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities we observe an anti crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multiexcition complexes giving rise to collective emission effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا