No Arabic abstract
In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important role in mediating the physics of assembling stars both individually and globally? We address this question by reviewing the current state of observations and their key points of contact with theory. Our review of jet/outflow phenomena is organized into three length-scale domains: Source and Disk Scales ($0.1-10^2$ au) where the connection with protostellar and disk evolution theories is paramount; Envelope Scales ($10^2-10^5$ au) where the chemistry and propagation shed further light on the jet launching process, its variability and its impact on the infalling envelope; Parent Cloud Scales ($10^5-10^6$ au) where global momentum injection into cluster/cloud environments become relevant. Issues of feedback are of particular importance on the smallest scales where planet formation regions in a disk may be impacted by the presence of disk winds, irradiation by jet shocks or shielding by the winds. Feedback on envelope scales may determine the final stellar mass (core-to-star efficiency) and envelope dissipation. Feedback also plays an important role on the larger scales with outflows contributing to turbulent support within clusters including alteration of cluster star formation efficiencies (feedback on larger scales currently appears unlikely). A particularly novel dimension of our review is that we consider results on jet dynamics from the emerging field of High Energy Density Laboratory Astrophysics (HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully magnetized, hypersonic, radiative outflows.
We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{mu}m -line imaging of the sim 30-long filamentary shaped Serpens South star forming region was carried out. K s broadband imaging of the same region was used for continuum subraction. Candidate driving sources of the mapped jets/outflows are identified from the list of known protostars and young stars in this region, which was derived from studies using recent Spitzer and Herschel telescope observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified using our continuum-subtracted images. They are found to constitute ten individual flows. Out of these, nine flows are located in the lower-half(southern) part of the Serpens South filament, and one flow is located at the northern tip of the filament. Four flows are driven by well-identified Class 0 protostars, while the remaining six flows are driven by candidate protostars mostly in the Class I stage, based on the Spitzer and Herschel observations. The orientation of the outflows is systematically perpendicular to the direction of the near-infrared polarization vector, recently published in the literature. No significant correlation was observed between the orientation of the flows and the axis of the filamentary cloud.
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the CDFS. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ~ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z > 0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semi-analytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance,
The magnetic breakout model, in which reconnection in the corona leads to destabilization of a filament channel, explains numerous features of eruptive solar events, from small-scale jets to global-scale coronal mass ejections (CMEs). The underlying multipolar topology, pre-eruption activities, and sequence of magnetic reconnection onsets (first breakout, then flare) of many observed fast CMEs/eruptive flares are fully consistent with the model. Recently, we have demonstrated that most observed coronal-hole jets in fan/spine topologies also are induced by breakout reconnection at the null point above a filament channel (with or without a filament). For these two types of eruptions occurring in similar topologies, the key question is, why do some events generate jets while others form CMEs? We focused on the initiation of eruptions in large bright points/small active regions that were located in coronal holes and clearly exhibited null-point (fan/spine) topologies: such configurations are referred to as pseudostreamers. We analyzed and compared SDO/AIA, SOHO/LASCO, and RHESSI observations of three events. Our analysis of the events revealed two new observable signatures of breakout reconnection prior to the explosive jet/CME outflows and flare onset: coronal dimming and the opening-up of field lines above the breakout current sheet. Most key properties were similar among the selected erupting structures, thereby eliminating region size, photospheric field strength, magnetic configuration, and pre-eruptive evolution as discriminating factors between jets and CMEs. We consider the factors that contribute to the different types of dynamic behavior, and conclude that the main determining factor is the ratio of the magnetic free energy associated with the filament channel compared to the energy associated with the overlying flux inside and outside the pseudostreamer dome.
During these last decades, our knowledge of evolutionary and structural properties of stars of different mass and chemical composition is significantly improved. This result has been achieved as a consequence of our improved capability in understanding and describing the physical behavior of matter in the different thermal regimes characteristic of the various stellar mass ranges and evolutionary stages. This notwithstanding, current generation of stellar models is still affected by significant and, usually, not negligible uncertainties. These uncertainties are related to our poor knowledge of some physical proceses occurring in the real stars such as, for instance, some thermodynamical processes, nuclear reaction rates, as well as the efficiency of mixing processes. These drawbacks of stellar models have to be properly taken into account when comparing theory with observations in order to derive relevant information about the properties of both resolved and unresolved stellar populations. On the other hand, observations of both field and cluster stars can provide fundamental benchmarks for constraining the reliability and accuracy of the theoretical framework. In the following we review some important evolutionary and structural properties of very-low and low-mass stars, as well as the most important uncertainties affecting the stellar models for such stars. We show what are the main sources of uncertainty along the main evolutionary stages, and discuss the present level of agreement between theory and observations.