Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states (iPEPS) confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only slightly lower energy than the stripe with anti-phase d-wave order. The optimal stripe filling is not constant but increases with J/t. A nematic anisotropy reduces the pairing amplitude and the energies of stripe phases are lowered relative to the uniform state with increasing nematicity.
Unravelling competing orders emergent in doped Mott insulators and their interplay with unconventional superconductivity is one of the major challenges in condensed matter physics. To explore possible superconductivity state in the doped Mott insulator, we study a square-lattice $t$-$J$ model with both the nearest and next-nearest-neighbor electron hoppings and spin Heisenberg interactions. By using the state-of-the-art density matrix renormalization group simulations with imposing charge $U(1)$ and spin $SU(2)$ symmetries on the large-scale six-leg cylinders, we establish a quantum phase diagram including three phases: a stripe charge density wave phase, a superconducting phase without static charge order, and a superconducting phase coexistent with a weak charge stripe order. Crucially, we demonstrate that the superconducting phase has a power-law pairing correlation decaying much slower than the charge density and spin correlations, which is a quasi-1D descendant of the uniform d-wave superconductor in two dimensions. These findings reveal that enhanced charge and spin fluctuations with optimal doping is able to produce robust d-wave superconductivity in doped Mott insulators, providing a foundation for connecting theories of superconductivity to models of strongly correlated systems.
Determination of the parameter regime in which two holes in the t-J model form a bound state represents a long standing open problem in the field of strongly correlated systems. By applying and systematically improving the exact diagonalization method defined over a limited functional space (EDLFS), we show that the average distance between two holes scales as $langle d rangle sim 2 (J/t)^{-1/4}$ for J/t < 0.15, therefore providing strong evidence that two holes in the t-J model form the bound state for any nonzero J/t. However, the symmetry of such bound pair in the ground state is p-wave. This state is consistent with phase separation at finite hole filling, as observed in a recent study [Maska et al, Phys. Rev. B 85, 245113 (2012)].
We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for single hole in t-J model coupled to optical phonons. The systematic-error free diagrammatic Monte Carlo is employed where the Feynman graphs for the Matsubara Green function in imaginary time are summed up completely with respect to phonons variables, while magnetic variables are subjected to non-crossing approximation. We obtain that at electron-phonon coupling constants relevant for high Tc cuprates the polaron undergoes self-trapping crossover to strong coupling limit and theoretical ARPES demonstrate features observed in experiment: a broad peak in the bottom of the spectra has momentum dependence which coincides with that of hole in pure t-J model.
We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic and d-wave pairing. This enables us to study the interplay between these two kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expectation values of the pair-pair correlation functions. In the case of $t^prime=0$, there is a large region with a coexistence of superconductivity and antiferromagnetism, that survives up to $delta_c sim 0.10$ for $J/t=0.2$ and $delta_c sim 0.13$ for $J/t=0.4$. The presence of a finite $t^prime/t<0$ induces a strong suppression of both magnetic (with $delta_c lesssim 0.03$, for $J/t=0.2$ and $t^prime/t=-0.2$) and pairing correlations. In particular, the latter ones are depressed both in the low-doping regime and around $delta sim 0.25$, where strong size effects are present.
Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, $W$. For the ordinary t-J model with $W$=0, the scaling of the Drude weight $D propto delta^2$ for small doping concentration $delta$ is obtained, which indicates anomalous dynamic exponent $z$=4 of the Mott transition. When $W$ is switched on, the dynamic exponent recovers its conventional value $z$=2. This corresponds to an incoherent-to-coherent transition associated with the switching of the two-particle transfer.
Philippe Corboz
,T. M. Rice
,Matthias Troyer
.
(2014)
.
"Competing states in the t-J model: uniform d-wave state versus stripe state"
.
Philippe Corboz
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا