We report an ultrafast optical tuning of the reflectivity of AlGaAs/InAlGaAs multiple quantum well photonic crystal waveguides using a reflection geometry, pump-probe technique.
This letter reports on the growth, structure and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis. Micro-photoluminescence measurements and confocal microscopy showed enhanced light emission from the MQW NWs as compared to non-segmented NWs due to carrier confinement and sidewall passivation.
Photonic crystal membranes (PCM) provide a versatile planar platform for on-chip implementations of photonic quantum circuits. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot (QD) which forms a fundamental building block for elaborate quantum information networks and a cavity quantum electrodynamic (cQED) system controlled by single photons. So far no fast tuning mechanism is available to achieve control within the system coherence time. Here we demonstrate dynamic tuning by monochromatic coherent acoustic phonons formed by a surface acoustic wave (SAW) with frequencies exceeding 1.7 gigahertz, one order of magnitude faster than alternative approaches. We resolve a periodic modulation of the optical mode exceeding eight times its linewidth, preserving both the spatial mode profile and a high quality factor. Since PCMs confine photonic and phononic excitations, coupling optical to acoustic frequencies, our technique opens ways towards coherent acoustic control of optomechanical crystals.
Based on a microscopic many-particle theory we study the amplification of polaritons in a multiple-quantum-well resonant photonic crystal. For the Bragg-spaced multiple quantum wells under investigation we predict that in a typical pump-probe setup four-wave mixing processes can lead to an unstable energy transfer from the pump into the probe and the background-free four-wave mixing directions. We find that under certain excitation conditions this phase-conjugate oscillation induced instability can lead to a large amplification of the weak probe pulse.
Spontaneous emission from excitonic transitions in InAs/GaAs quantum dots embedded in photonic crystal waveguides at 5K into non-guided and guided modes is determined by direct hyperspectral imaging. This enables measurement of the absolute coupling efficiency into the guided modes, the beta-factor, directly, without assumptions on decay rates used previously. Notably, we found beta-factors above 90% over a wide spectral range of 40meV in the fast light regime, reaching a maximum of (99 $pm$ 1)%. We measure the directional emission of the circularly polarized transitions in a magnetic field into counter-propagating guided modes, to deduce the mode circularity at the quantum dot sites. We find that points of high directionality, up to 97%, correlate with a reduced beta-factor, consistent with their positions away from the mode field antinode. By comparison with calibrated finite-difference time-domain simulations, we use the emission energy, mode circularity and beta-factor to estimate the quantum dot position inside the photonic crystal waveguide unit cell.
The recently established paradigm of higher-order topological states of matter has shown that not only, as previously thought, edge and surface states but also states localised to corners can have robust and exotic properties. Here we report on the experimental realisation of novel corner states made out of classical light in three-dimensional photonic structures inscribed in glass samples using femtosecond (fs) laser technology. By creating and analysing waveguide arrays forming two-dimensional breathing kagome lattices in various sample geometries, we establish this as a platform for corner states exhibiting a remarkable degree of flexibility and control. In each sample geometry we measure eigenmodes that are localised at the corners in a finite frequency range in complete analogy with a theoretical model of the breathing kagome. Here, the measurements reveal that light can be fractionalised, corresponding to simultaneous localisation to each corner of a triangular sample, even in the presence of defects. The fabrication method applied in this work exposes the advantage of using fs-laser writing for producing compact three-dimensional devices thus paving the way for technological applications by simulating novel higher-order states of matter.
A. Z. Garcia-Deniz
,P. Murzyn
,A. M. Fox
.
(2014)
.
"Ultrafast reflectivity modulation in AlGaAs/InAlGaAs multiple quantum well photonic crystal waveguides"
.
Dmytro Kundys
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا