Do you want to publish a course? Click here

Cross Section Measurements with Monoenergetic Muon Neutrinos

220   0   0.0 ( 0 )
 Added by Joshua Spitz
 Publication date 2014
  fields Physics
and research's language is English
 Authors J. Spitz




Ask ChatGPT about the research

The monoenergetic 236 MeV muon neutrino from charged kaon decay-at-rest ($K^+ rightarrow mu^+ u_mu$) can be used to produce a novel set of cross section measurements. Applicable for short- and long-baseline accelerator-based neutrino oscillation experiments, among others, such measurements would provide a standard candle for the energy reconstruction and interaction kinematics relevant for charged current neutrino events near this energy. This neutrino can also be exercised as a unique known-energy, purely weak interacting probe of the nucleus. A number of experiments are set to come online in the next few years that will be able to collect and characterize thousands of these events.



rate research

Read More

The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4$pi$ acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.
XSEN (Cross Section of Energetic Neutrinos) is a small experiment designed to study, for the first time, neutrino-nucleon interactions (including the tau flavour) in the 0.5-1 TeV neutrino energy range. The detector will be installed in the decommissioned TI18 tunnel and uses nuclear emulsions. Its simplicity allows construction and installation before the LHC Run 3, 2021-2023; with 150/fb in Run3, the experiment can record up to two thousand neutrino interactions, and up to a hundred tau neutrino events. The XSEN detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudo-rapidities, where neutrino energies can exceed the TeV. Since the neutrino-N interaction cross section grows almost linearly with energy, the detector can be light and still collect a considerable sample of neutrino interactions. In our proposal, the detector weighs less than 3 tons. It is lying slightly above the ideal prolongation of the LHC beam from the straight section; this configuration, off the beam axis, although very close to it, enhances the contribution of neutrinos from c and b decays, and consequently of tau neutrinos. The detector fits in the TI18 tunnel without modifications. We plan for a demonstrator experiment in 2021 with a small detector of about 0.5 tons; with 25/fb, nearly a hundred interactions of neutrinos of about 1 TeV can be recorded. The aim of this pilot run is a good in-situ characterisation of the machine-generated backgrounds, an experimental verification of the systematic uncertainties and efficiencies, and a tuning of the emulsion analysis infrastructure and efficiency. This Letter provides an overview of the experiment motivations, location, design constraints, technology choice, and operation.
149 - S. Robertson 2021
The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the $ u_mu$ absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity.
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a $sim$ 1 m $times$ 1 m $times$ 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.
This paper reports on laser-induced multiphoton ionization at 266 nm of liquid argon in a time projection chamber (LAr TPC) detector. The electron signal produced by the laser beam is a formidable tool for the calibration and monitoring of next-generation large-mass LAr TPCs. The detector that we designed and tested allowed us to measure the two-photon absorption cross-section of LAr with unprecedented accuracy and precision: sigma_ex=(1.24pm 0.10stat pm 0.30syst) 10^{-56} cm^4s{-1}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا