We study the flavor structure in intersecting D-brane models. We study anomalies of the discrete flavor symmetries. We analyze the Majorana neutrino masses, which can be generated by D-brane instanton effects. It is found that a certain pattern of mass matrix is obtained and the cyclic permutation symmetry remains unbroken. As a result, trimaximal mixing matrix can be realized if Dirac neutrino mass and charged lepton mass matrices are diagonal.
Intersecting D-brane models and their T-dual magnetic compactifications yield attractive models of particle physics where magnetic flux plays a twofold role, being the source of fermion chirality as well as supersymmetry breaking. A potential problem of these models is the appearance of tachyons which can only be avoided in certain regions of moduli space and in the presence of Wilson lines. We study the effective four-dimensional field theory for an orientifold compactification of type IIA string theory and the corresponding toroidal compactification of type I string theory. After determining the Kaluza-Klein and Landau-level towers of massive states in different sectors of the model, we evaluate their contributions to the one-loop effective potential, summing over all massive states, and we relate the result to the corresponding string partition functions. We find that the Wilson-line effective potential has only saddle points, and the theory is therefore driven to the tachyonic regime. There tachyon condensation takes place and chiral fermions acquire a mass of the order of the compactification scale. We also find evidence for a tachyonic behaviour of the volume moduli. More work on tachyon condensation is needed to clarify the connection between supersymmetry breaking, a chiral fermion spectrum and vacuum stability.
The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6-8 TeV. Two Higgs doublets are necessary and proton stability is guaranteed. It predicts two massive vector bosons with masses at the TeV scale, as well as a new superweak interaction.
We study modular transformation of holomorphic Yukawa couplings in magnetized D-brane models. It is found that their products are modular forms, which are non-trivial representations of finite modular subgroups, e.g. $S_3$, $S_4$, $Delta(96)$ and $Delta(384)$.
We analyze proton decay via dimension six operators in certain GUT-like models derived from Type IIA orientifolds with $D6$-branes. The amplitude is parametrically enhanced by a factor of $alpha_{GUT}^{-1/3}$ relative to the coresponding result in four-dimensional GUTs. Nonetheless, even assuming a plausible enhancement from the threshold corrections, we find little overall enhancement of the proton decay rate from dimension six operators, so that the predicted lifetime from this mechanism remains close to $10^{36}$ years.
We discuss what kinds of combinations of Yukawa interactions can generate the Majorana neutrino mass matrix. We concentrate on the flavor structure of the neutrino mass matrix because it does not depend on details of the models except for Yukawa interactions while determination of the overall scale of the mass matrix requires to specify also the scalar potential and masses of new particles. Thus, models to generate Majorana neutrino mass matrix can be efficiently classified according to the combination of Yukawa interactions. We first investigate the case where Yukawa interactions with only leptons are utilized. Next, we consider the case with Yukawa interactions between leptons and gauge singlet fermions, which have the odd parity under the unbroken Z_2 symmetry. We show that combinations of Yukawa interactions for these cases can be classified into only three groups. Our classification would be useful for the efficient discrimination of models via experimental tests for not each model but just three groups of models.