Do you want to publish a course? Click here

Cold dark matter heats up

253   0   0.0 ( 0 )
 Added by Andrew Pontzen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the principal discoveries in modern cosmology is that standard model particles (including baryons, leptons and photons) together comprise only 5% of the mass-energy budget of the Universe. The remaining 95% consists of dark energy and dark matter (DM). Consequently our picture of the universe is known as {Lambda}CDM, with {Lambda} denoting dark energy and CDM cold dark matter. {Lambda}CDM is being challenged by its apparent inability to explain the low density of DM measured at the centre of cosmological systems, ranging from faint dwarf galaxies to massive clusters containing tens of galaxies the size of the Milky Way. But before making conclusions one should carefully include the effect of gas and stars, which were historically seen as merely a passive component during the assembly of galaxies. We now understand that these can in fact significantly alter the DM component, through a coupling based on rapid gravitational potential fluctuations.



rate research

Read More

295 - Kris Sigurdson 2009
We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple when it is relativistic, is a viable dark matter candidate provided it has never been in thermal equilibrium with the particles of the standard model. This hidden hot dark matter may reheat to a lower temperature and number density than the visible Universe and thus account, simply with its thermal abundance, for all the dark matter in the Universe while evading the typical constraints on hot dark matter arising from structure formation. We find masses ranging from ~3 keV to ~10 TeV. While never in equilibrium with the standard model, this class of models may have unique observational signatures in the matter power spectrum or via extra-weak interactions with standard model particles.
182 - Mark Vogelsberger 2009
We simulate the growth of isolated dark matter haloes from self-similar and spherically symmetric initial conditions. Our N-body code integrates the geodesic deviation equation in order to track the streams and caustics associated with individual simulation particles. The radial orbit instability causes our haloes to develop major-to-minor axis ratios approaching 10 to 1 in their inner regions. They grow similarly in time and have similar density profiles to the spherical similarity solution, but their detailed structure is very different. The higher dimensionality of the orbits causes their stream and caustic densities to drop much more rapidly than in the similarity solution. This results in a corresponding increase in the number of streams at each point. At 1% of the turnaround radius (corresponding roughly to the Suns position in the Milky Way) we find of order 10^6 streams in our simulations, as compared to 10^2 in the similarity solution. The number of caustics in the inner halo increases by a factor of several, because a typical orbit has six turning points rather than one, but caustic densities drop by a much larger factor. This reduces the caustic contribution to the annihilation radiation. For the region between 1% and 50% of the turnaround radius, this is 4% of the total in our simulated haloes, as compared to 6.5% in the similarity solution. Caustics contribute much less at smaller radii. These numbers assume a 100 GeV c^-2 neutralino with present-day velocity dispersion 0.03 cm s^-1, but reducing the dispersion by ten orders of magnitude only doubles the caustic luminosity. We conclude that caustics will be unobservable in the inner parts of haloes. Only the outermost caustic might potentially be detectable.
The density field in the outskirts of dark matter halos is discontinuous due to a caustic formed by matter at its first apocenter after infall. In this paper, we present an algorithm to identify the splashback shell formed by these apocenters in individual simulated halos using only a single snapshot of the density field. We implement this algorithm in the code SHELLFISH (SHELL Finding In Spheroidal Halos) and demonstrate that the code identifies splashback shells correctly and measures their properties with an accuracy of $<5%$ for halos with more than 50,000 particles and mass accretion rates of $Gamma_textrm{DK14}>0.5$. Using SHELLFISH, we present the first estimates for several basic properties of individual splashback shells, such as radius, $R_textrm{sp}$, mass, and overdensity, and provide fits to the distribution of these quantities as functions of $Gamma_textrm{DK14}$, $ u_textrm{200m}$, and $z.$ We confirm previous findings that $R_textrm{sp}$ decreases with increasing $Gamma_textrm{DK14}$, but we show that independent of accretion rate, it also decreases with increasing $ u_textrm{200m}$. We also study the 3D structures of these shells and find that they generally have non-ellipsoidal oval shapes. We find that splashback radii estimated by SHELLFISH are $20%-30%$ larger than those estimated in previous studies from stacked density profiles at high accretion rates. We demonstrate that the latter are biased low due to the contribution of high-mass subhalos to these profiles and show that using the median instead of mean density in each radial bin mitigates the effect of substructure on density profiles and removes the bias.
257 - Andrew J. Benson 2012
We describe a methodology to accurately compute halo mass functions, progenitor mass functions, merger rates and merger trees in non-cold dark matter universes using a self-consistent treatment of the generalized extended Press-Schechter formalism. Our approach permits rapid exploration of the subhalo population of galactic halos in dark matter models with a variety of different particle properties or universes with rolling, truncated, or more complicated power spectra. We make detailed comparisons of analytically derived mass functions and merger histories with recent warm dark matter cosmological N-body simulations, and find excellent agreement. We show that, once the accretion of smoothly distributed matter is accounted for, coarse-grained statistics such as the mass accretion history of halos can be almost indistinguishable between cold and warm dark matter cases. However, the halo mass function and progenitor mass functions differ significantly, with the warm dark matter cases being strongly suppressed below the free-streaming scale of the dark matter. We demonstrate the importance of using the correct solution for the excursion set barrier first-crossing distribution in warm dark matter - if the solution for a flat barrier is used instead the truncation of the halo mass function is much slower, leading to an overestimate of the number of low mass halos.
We present integral field spectroscopy of galaxy cluster Abell 3827, using ALMA and VLT/MUSE. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on HST imaging had suggested that the dark matter associated with one of the clusters central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centered on the galaxies, as expected by LCDM. Each galaxys dark matter also appears to be symmetric. Whilst we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا