Do you want to publish a course? Click here

Caustics in growing Cold Dark Matter Haloes

183   0   0.0 ( 0 )
 Added by Mark Vogelsberger
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulate the growth of isolated dark matter haloes from self-similar and spherically symmetric initial conditions. Our N-body code integrates the geodesic deviation equation in order to track the streams and caustics associated with individual simulation particles. The radial orbit instability causes our haloes to develop major-to-minor axis ratios approaching 10 to 1 in their inner regions. They grow similarly in time and have similar density profiles to the spherical similarity solution, but their detailed structure is very different. The higher dimensionality of the orbits causes their stream and caustic densities to drop much more rapidly than in the similarity solution. This results in a corresponding increase in the number of streams at each point. At 1% of the turnaround radius (corresponding roughly to the Suns position in the Milky Way) we find of order 10^6 streams in our simulations, as compared to 10^2 in the similarity solution. The number of caustics in the inner halo increases by a factor of several, because a typical orbit has six turning points rather than one, but caustic densities drop by a much larger factor. This reduces the caustic contribution to the annihilation radiation. For the region between 1% and 50% of the turnaround radius, this is 4% of the total in our simulated haloes, as compared to 6.5% in the similarity solution. Caustics contribute much less at smaller radii. These numbers assume a 100 GeV c^-2 neutralino with present-day velocity dispersion 0.03 cm s^-1, but reducing the dispersion by ten orders of magnitude only doubles the caustic luminosity. We conclude that caustics will be unobservable in the inner parts of haloes. Only the outermost caustic might potentially be detectable.



rate research

Read More

169 - Jesus Zavala 2019
The development of methods and algorithms to solve the $N$-body problem for classical, collisionless, non-relativistic particles has made it possible to follow the growth and evolution of cosmic dark matter structures over most of the Universes history. In the best studied case $-$ the cold dark matter or CDM model $-$ the dark matter is assumed to consist of elementary particles that had negligible thermal velocities at early times. Progress over the past three decades has led to a nearly complete description of the assembly, structure and spatial distribution of dark matter haloes, and their substructure in this model, over almost the entire mass range of astronomical objects. On scales of galaxies and above, predictions from this standard CDM model have been shown to provide a remarkably good match to a wide variety of astronomical data over a large range of epochs, from the temperature structure of the cosmic background radiation to the large-scale distribution of galaxies. The frontier in this field has shifted to the relatively unexplored subgalactic scales, the domain of the central regions of massive haloes, and that of low-mass haloes and subhaloes, where potentially fundamental questions remain. Answering them may require: (i) the effect of known but uncertain baryonic processes (involving gas and stars), and/or (ii) alternative models with new dark matter physics. Here we present a review of the field, focusing on our current understanding of dark matter structure from $N$-body simulations and on the challenges ahead.
125 - Carlo Giocoli 2009
We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen et al. (2004) and Giocoli et al. (2008a), which identifies a subhalo as a group of self-bound particles that prior to being accreted by the main progenitor of the host halo belonged to one and the same progenitor halo (hereafter satellite). However, this definition does not account for the fact that these satellite haloes themselves may also have substructure, which thus gives rise to sub-subhaloes, etc. Our new algorithm identifies substructures at all levels of this hierarchy, and we use it to determine the mass function of all substructure (counting sub-haloes, sub-subhaloes, etc.). On average, haloes which formed more recently tend to have a larger mass fraction in substructure and to be less concentrated than average haloes of the same mass. We provide quantitative fits to these correlations. Even though our algorithm is very different from that of Gao et al. (2004), we too find that the subhalo mass function per unit mass at redshift z = 0 is universal. This universality extends to any redshift only if one accounts for the fact that host haloes of a given mass are less concentrated at higher redshifts, and concentration and substructure abundance are anti-correlated. This universality allows a simple parametrization of the subhalo mass function integrated over all host halo masses, at any given time. We provide analytic fits to this function which should be useful in halo model analyses which equate galaxies with halo substructure when interpreting clustering in large sky surveys. Finally, we discuss systematic differences in the subhalo mass function that arise from different definitions of (host) halo mass.
63 - Neal Dalal , Jo Bovy , Lam Hui 2020
We study how tidal streams from globular clusters may be used to constrain the mass of ultra-light dark matter particles, called `fuzzy dark matter (FDM). A general feature of FDM models is the presence of ubiquitous density fluctuations in bound, virialized dark matter structures, on the scale of the de Broglie wavelength, arising from wave interference in the evolving dark matter distribution. These time-varying fluctuations can disturb the motions of stars, leading to potentially observable signatures in cold thin tidal streams in our own Galaxy. The study of this effect has been hindered by the difficulty in simulating the FDM wavefunction in Milky Way-sized systems. We present a simple method to evolve realistic wavefunctions in nearly static potentials, that should provide an accurate estimate of this granulation effect. We quantify the impact of FDM perturbations on tidal streams, and show that initially, while stream perturbations are small in amplitude, their power spectra exhibit a sharp cutoff corresponding to the de Broglie wavelength of the FDM potential fluctuations. Eventually, when stream perturbations become nonlinear, fold caustics generically arise that lead to density fluctuations with universal behavior. This erases the signature of the de Broglie wavelength in the stream density power spectrum, but we show that it will still be possible to determine the FDM mass in this regime, by considering the fluctuations in quantities like angular momenta or actions.
138 - Mark Vogelsberger 2012
We present N-body simulations of a new class of self-interacting dark matter models, which do not violate any astrophysical constraints due to a non-power-law velocity dependence of the transfer cross section which is motivated by a Yukawa-like new gauge boson interaction. Specifically, we focus on the formation of a Milky Way-like dark matter halo taken from the Aquarius project and re-simulate it for a couple of representative cases in the allowed parameter space of this new model. We find that for these cases, the main halo only develops a small core (~1 kpc) followed by a density profile identical to that of the standard cold dark matter scenario outside of that radius. Neither the subhalo mass function nor the radial number density of subhaloes are altered in these models but there is a significant change in the inner density structure of subhaloes resulting in the formation of a large density core. As a consequence, the inner circular velocity profiles of the most massive subhaloes differ significantly from the cold dark matter predictions and we demonstrate that they are compatible with the observational data of the brightest Milky Way dSphs in such a velocity-dependent self-interacting dark matter scenario. Specifically, and contrary to the cold dark matter case, there are no subhaloes that are more concentrated than what is inferred from the kinematics of the Milky Way dSphs. We conclude that these models offer an interesting alternative to the cold dark matter model that can reduce the recently reported tension between the brightest Milky Way satellites and the dense subhaloes found in cold dark matter simulations.
295 - Kris Sigurdson 2009
We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple when it is relativistic, is a viable dark matter candidate provided it has never been in thermal equilibrium with the particles of the standard model. This hidden hot dark matter may reheat to a lower temperature and number density than the visible Universe and thus account, simply with its thermal abundance, for all the dark matter in the Universe while evading the typical constraints on hot dark matter arising from structure formation. We find masses ranging from ~3 keV to ~10 TeV. While never in equilibrium with the standard model, this class of models may have unique observational signatures in the matter power spectrum or via extra-weak interactions with standard model particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا