Do you want to publish a course? Click here

On the vanishing of Hochsters theta invariant

239   0   0.0 ( 0 )
 Added by Mark Walker
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Hochsters theta invariant is defined for a pair of finitely generated modules on a hypersurface ring having only an isolated singularity. Up to a sign, it agrees with the Euler invariant of a pair of matrix factorizations. Working over the complex numbers, Buchweitz and van Straten have established an interesting connection between Hochsters theta invariant and the classical linking form on the link of the singularity. In particular, they establish the vanishing of the theta invariant if the hypersurface is even-dimensional by exploiting the fact that the (reduced) cohomology of the Milnor fiber is concentrated in odd degrees in this situation. In this paper, we give purely algebra



rate research

Read More

Let $R=Bbbk[x_1,dots,x_n]$ be a polynomial ring over a field $Bbbk$ and let $Isubset R$ be a monomial ideal preserved by the natural action of the symmetric group $mathfrak S_n$ on $R$. We give a combinatorial method to determine the $mathfrak S_n$-module structure of $mathrm{Tor}_i(I,Bbbk)$. Our formula shows that $mathrm{Tor}_i(I,Bbbk)$ is built from induced representations of tensor products of Specht modules associated to hook partitions, and their multiplicities are determined by topological Betti numbers of certain simplicial complexes. This result can be viewed as an $mathfrak S_n$-equivariant analogue of Hochsters formula for Betti numbers of monomial ideals. We apply our results to determine extremal Betti numbers of $mathfrak S_n$-invariant monomial ideals, and in particular recover formulas for their Castelnuovo--Mumford regularity and projective dimension. We also give a concrete recipe for how the Betti numbers change as we increase the number of variables, and in characteristic zero (or $>n$) we compute the $mathfrak S_n$-invariant part of $mathrm{Tor}_i(I,Bbbk)$ in terms of $mathrm{Tor}$ groups of the unsymmetrization of $I$.
We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to numerical semigroups. This correspondence is shown to preserve the complete intersection property, and allows us to use some available algorithms to determine whether a given vanishing ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete intersection in terms of the Frobenius number and the generators of a numerical semigroup.
We give an elementary proof of Grothendiecks non-vanishing Theorem: For a finitely generated non-zero module $M$ over a Noetherian local ring $A$ with maximal ideal $m$, the local cohomology module $H^{dim M}_{m}(M)$ is non-zero.
88 - Kriti Goel , Vivek Mukundan , 2019
Using vanishing of graded components of local cohomology modules of the Rees algebra of the normal filtration of an ideal, we give bounds on the normal reduction number. This helps to get necessary and sufficient conditions in Cohen-Macaulay local rings of dimension $dgeq 3$, for the vanishing of the normal Hilbert coefficients $overline{e}_k(I)$ for $kleq d,$ in terms of the normal reduction number.
179 - M.E. Rossi , G. Valla 2008
We study the first Hilbert coefficient (after the multiplicity) $e_1$ of a local ring $(A,m). $ Under various circumstances, it is also called the {bf Chern number} of the local ring $A.$ Starting from the work of D.G. Northcott in the 60s, several results have been proved which give some relationships between the Hilbert coefficients, but always assuming the Cohen-Macaulayness of the basic ring. Recent papers of S. Goto, K. Nishida, A. Corso and W. Vasconcelos pushed the interest toward a more general setting. In this paper we extend an upper bound on $e_1$ proved by S. Huckaba and T. Marley. Thus we get the Cohen-Macaulayness of the ring $A$ as a consequence of the extremal behavior of the integer $e_1.$ The result can be considered a confirm of the general philosophy of the paper of W. Vasconcelos where the Chern number is conjectured to be a measure of the distance from the Cohen-Macaulyness of $A.$ This main result of the paper is a consequence of a nice and perhaps unexpected property of superficial elements. It is essentially a kind of Sally machine for local rings. In the last section we describe an application of these results, concerning an upper bound on the multiplicity of the Sally module of a good filtration of a module which is not necessarily Cohen-Macaulay. It is an extension to the non Cohen-Macaulay case of a result of Vaz Pinto.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا