Do you want to publish a course? Click here

Baryon Asymmetry in Neutrino Mass Models with and without {theta}_13

169   0   0.0 ( 0 )
 Added by Ng K Francis
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the comparative studies of cosmological baryon asymmetry in different neutrino mass models with and without {theta}_13 by considering the three diagonal form of Dirac neutrino mass matrices, down-quark (4,2), up-quark (8,4) and charged lepton (6,2). The predictions of any models with {theta}_13 are consistent in all the three stages of leptogenesis calculations and the results are better than the predictions of any models without {theta}_13 which are consistent in a piecemeal manner with the observational data. For the best model, the normal hierarchy Type-IA for charged lepton (6,2) without {theta}_13, the predicted inflaton mass required to produce the observed baryon asymmetry is found to be 3.6x10 to the power 10 GeV corresponding to reheating temperature TR 4.5x10 to the power 6 GeV, while for the same model with {theta}_13, the inflaton mass is 2.24x10 to the power 11 GeV, TR 4.865x10 to the power 6 GeV and weak scale gravitino mass m(2 divided by 3) 100 GeV without causing the gravitino problem. These values apply to the recent discovery of Higgs boson of mass 125 GeV. The relic abundance of gravitino is proportional to the reheating temperature of the thermal bath. One can have the right order of relic dark matter abundance only if the reheating temperature is bounded to below 10 to the power 7 GeV.



rate research

Read More

108 - Shinya Kanemura 2017
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken $Z_2$ symmetry that stabilizes the dark matter candidate (the lightest $Z_2$-odd particle). In this model, $Z_2$-odd particles play an important role to generate the mass of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strong first-order phase transition, which is required for the electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for the baryogenesis. Therefore, three problems in the standard model, namely absence of neutrino masses, the dark matter candidate, and the mechanism to generate baryon asymmetry of the Universe, may be simultaneously resolved at the TeV-scale. Phenomenology of this model is also discussed briefly.
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming unnatural hierarchy among the mass scales. Tiny neutrino masses are generated at the three loop level due to the exact $Z_2$ symmetry, by which stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.
Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix $M_ u$, derived with a type-1 seesaw from a Dirac mass matrix $m_D$ and a heavy singlet neutrino Majorana mass matrix $M_R$. One of its important features, highlighted here, is that there is a common source of the origin of a nonzero $theta_{13}$ and the CP violating lepton asymmetry through the imaginary part of $m_D$. The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for $M_R$. The leptonic CP asymmetry parameter $varepsilon^alpha_{1}hspace{1mm}$ with lepton flavor $alpha$, originating from the decays of the lightest of the heavy neutrinos $N_1$ (of mass $M_1$) at a temperature $Tsim M_1$, is what matters here with $varepsilon^alpha_{2,3}$, originating from the decays of $N_{2,3}$, being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effect of flavored vs. unflavored leptogenesis in the three mass regimes (1) $M_1<10^{9}$ GeV, (2) $10^9$ GeV $<M_1<$ $10^{12}$ GeV and (3) $M_1>10^{12}$ GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed.
In this work, we explain three beyond standard model (BSM) phenomena, namely neutrino masses, the baryon asymmetry of the Universe and Dark Matter, within a single model and in each explanation the right handed (RH) neutrinos play the prime role. Indeed by just introducing two RH neutrinos we can generate the neutrino masses by the Type-I seesaw mechanism. The baryon asymmetry of the Universe can arise from thermal leptogenesis from the decay of lightest RH neutrino before the decoupling of the electroweak sphaleron transitions, which redistribute the $ B-L $ number into a baryon number. At the same time, the decay of the RH neutrino can produce the Dark Matter (DM) as an asymmetric Dark Matter component. The source of CP violation in the two sectors is exactly the same, related to the complex couplings of the neutrinos. By determining the comoving number density for different values of the CP violation in the DM sector, we obtain a particular value of the DM mass after satisfying the relic density bound. We also give prediction for the DM direct detection (DD) in the near future by different ongoing DD experiments.
We consider theories where the Standard Model (SM) neutrinos acquire masses through the seesaw mechanism at the weak scale. We show that in such a scenario, the requirement that any pre-existing baryon asymmetry, regardless of its origin, not be washed out leads to correlations between the pattern of SM neutrino masses and the spectrum of new particles at the weak scale, leading to definite predictions for the LHC. For type I seesaw models with a TeV scale Z coupled to SM neutrinos, we find that for a normal neutrino mass hierarchy, at least one of the right-handed neutrinos must be `electrophobic, decaying with a strong preference into final states with muons and tauons rather than electrons. For inverted or quasi-degenerate mass patterns, on the other hand, we find upper bounds on the mass of at least one right-handed neutrino. In particular, for an inverted mass hierarchy, this bound is 1 TeV, while the corresponding upper limit in the quasi-degenerate case is 300 GeV. Similar results hold in type III seesaw models, albeit with somewhat more stringent bounds. For the Type II seesaw case with a weak scale SU(2) triplet Higgs, we again find that an interesting range of Higgs triplet masses is disallowed by these considerations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا