Do you want to publish a course? Click here

Observation of strontium segregation in LaAlO$_{3}$/SrTiO$_{3}$ and NdGaO$_{3}$/SrTiO$_{3}$ oxide heterostructures by X-ray photoemission spectroscopy

143   0   0.0 ( 0 )
 Added by Uwe Treske
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

LaAlO$_{3}$ and NdGaO$_{3}$ thin films of different thickness have been grown by pulsed laser deposition on TiO$_2$-terminated SrTiO$_{3}$ single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy $h u$ and emission angle $Theta$. In contrast to the core levels of the other elements, the Sr $3d$ line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide.



rate research

Read More

The time-resolved photoconductance of amorphous and crystalline LaAlO$_3$/SrTiO$_3$ interfaces, both hosting an interfacial 2-dimensional electron gas, is investigated under irradiation by variable-wavelengths, visible or ultraviolet photons. Unlike bare SrTiO$_3$ single crystals, showing relatively small photoconductance effects, both kinds of interfaces exhibit an intense and highly persistent photoconductance with extraordinarily long characteristic times. The temporal behaviour of the extra photoinduced conductance persisting after light irradiation shows a complex dependence on interface type (whether amorphous or crystalline), sample history and irradiation wavelength. textcolor{black}{The experimental results indicate that different mechanisms of photoexcitation are responsible for the photoconductance of crystalline and amorphous LaAlO$_3$/SrTiO$_3$ interfaces under visible light. We propose that the response of crystalline samples is mainly due to the promotion of electrons from the valence bands of both SrTiO$_3$ and LaAlO$_3$. This second channel is less relevant in amorphous LaAlO$_3$/SrTiO$_3$, where the higher density of point defects plays instead a major role.
452 - S. N. Klimin 2014
The interface superconductivity in LaAlO$_{3}$-SrTiO$_{3}$ heterostructures reveals a non-monotonic behavior of the critical temperature as a function of the two-dimensional density of charge carriers. We develop a theoretical description of interface superconductivity in strongly polar heterostructures, based on the dielectric function formalism. The density dependence of the critical temperature is calculated accounting for all phonon branches including different types of optical (interface and half-space) and acoustic phonons. The LO- and acoustic-phonon-mediated electron-electron interaction is shown to be the dominating mechanism governing the superconducting phase transition in the heterostructure.
111 - A. Rastogi , J. J. Pulikkotil , 2014
We report the effect of $delta$-doping at LaAlO$_{3}$/SrTiO$_{3}$ interface with LaMnO$_{3}$ monolayers on the photoconducting (PC) state. The PC is realized by exposing the samples to broad band optical radiation of a quartz lamp and 325 and 441 nm lines of a He-Cd laser. Along with the significant modification in electrical transport which drives the pure LaAlO$_{3}$/SrTiO$_{3}$ interface from metal-to-insulator with increasing LaMnO$_{3}$ sub-monolayer thickness, we also observe an enhancement in the photo-response and relaxation time constant. Possible scenario for the PC based on defect-clusters, random potential fluctuations and large lattice relaxation models have been discussed. For pure LaAlO$_{3}$/SrTiO$_{3}$, the photoconductivity appears to originate from inter-band transitions between Ti-derived $3d$ bands which are $e_{g}$ in character and O 2p - Ti $t_{2g}$ hybridized bands. The band structure changes significantly when fractional layers of LaMnO$_{3}$ are introduced. Here the Mn $e_{g}$ bands ($approx1.5$ eV above the Fermi energy) within the photo-conducting gap lead to a reduction in the photo-excitation energy and a gain in overall photoconductivity.
We investigate the 2-dimensional Fermi surface of high-mobility LaAlO$_3$/SrTiO$_3$ interfaces using Shubnikov-de Haas oscillations. Our analysis of the oscillation pattern underscores the key role played by the Rashba spin-orbit interaction brought about by the breaking of inversion symmetry, as well as the dominant contribution of the heavy $d_{xz}$/$d_{yz}$ orbitals on electrical transport. We furthermore bring into light the complex evolution of the oscillations with the carrier density, which is tuned by the field effect.
Using a combination of vertical transport measurements across and lateral transport measurements along the LaAlO$_{3}$/SrTiO$_{3}$ heterointerface, we demonstrate that significant potential barrier lowering and band bending are the cause of interfacial metallicity. Barrier lowering and enhanced band bending extends over 2.5 nm into LaAlO$_{3}$ as well as SrTiO$_{3}$. We explain origins of high-temperature carrier saturation, lower carrier concentration, and higher mobility in the sample with the thinnest LaAlO$_{3}$ film on a SrTiO$_{3}$ substrate. Lateral transport results suggest that parasitic interface scattering centers limit the low-temperature lateral electron mobility of the metallic channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا