No Arabic abstract
The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components since. Our analysis involves the application of the NEXUS Multiscale Morphology Filter (MMF) technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies cluster and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100Mpc/h. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.
Aims. We investigate how properties of the ensemble of superclusters in the cosmic web evolve with time. Methods. We perform numerical simulations of the evolution of the cosmic web using the LambdaCDM model in box sizes L0 = 1024, 512, 256 Mpc/h. We find supercluster ensembles of models for four evolutionary stages, corresponding to the present epoch z = 0, and to redshifts z = 1, z = 3, and z = 10. We calculate fitness diameters of superclusters defined from volumes of superclusters divided to filling factors of over-density regions. Geometrical and fitness diameters of largest superclusters, and the number of superclusters as functions of the threshold density are used as percolation functions to describe geometrical properties of the ensemble of superclusters in the cosmic web. We calculate distributions of geometrical and fitness diameters and luminosities of superclusters, and follow time evolution of percolation functions and supercluster distributions. We compare percolation functions and supercluster distributions of models and samples of galaxies of the Sloan Digital Sky Survey (SDSS). Results. Our analysis shows that fitness diameters of superclusters have a minimum at certain threshold density. Fitness diameters around minima almost do not change with time in co-moving coordinates. Numbers of superclusters have maxima which are approximately constant for all evolutionary epochs. Geometrical diameters of superclusters decrease during the evolution of the cosmic web; luminosities of superclusters increase during the evolution. Conclusions. Our study suggests that evolutionary changes occur inside dynamical volumes of superclusters. The stability of fitness diameters and numbers of superclusters during the evolution is an important property of the cosmic web.
We explore the evolution of halo spins in the cosmic web using a very large sample of dark matter haloes in the $Lambda$CDM Planck-Millennium N-body simulation. We use the NEXUS+ multiscale formalism to identify the hierarchy of filaments and sheets of the cosmic web at several redshifts. We find that at all times the magnitude of halo spins correlates with the web environment, being largest in filaments, and, for the first time, we show that it also correlates with filament thickness as well as the angle between spin-orientation and the spine of the host filament. For example, massive haloes in thick filaments spin faster than their counterparts in thin filaments, while for low-mass haloes the reverse is true. We also have studied the evolution of alignment between halo spin orientations and the preferential axes of filaments and sheets. The alignment varies with halo mass, with the spins of low-mass haloes being predominantly along the filament spine, while those of high-mass haloes being predominantly perpendicular to the filament spine. On average, for all halo masses, halo spins become more perpendicular to the filament spine at later times. At all redshifts, the spin alignment shows a considerable variation with filament thickness, with the halo mass corresponding to the transition from parallel to perpendicular alignment varying by more than one order of magnitude. The environmental dependence of halo spin magnitude shows little evolution for $zleq2$ and is likely a consequence of the correlations in the initial conditions or high redshift effects
We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the very intricate and hierarchical pattern that is the cosmic web. In particular, we characterize filaments (walls) in terms of their linear (surface) mass density. This is very good in capturing the evolution of these structures. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. We also show that voids are more naturally described in terms of their boundaries and not their centres. We illustrate this for void density profiles, which, when expressed as a function of the distance from void boundary, show a universal profile in good qualitative agreement with the theoretical shell-crossing framework of expanding underdense regions.
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web -- depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper we bring twelve of these methods together and apply them to the same data set in order to understand how they compare. In general these cosmic web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore one would not {it a priori} expect agreement between different techniques however, many of these methods do converge on the identification of specific features. In this paper we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. $M_{rm halo}sim10^{13.5}h^{-1}M_{odot}$) as being in filaments. Lastly, so that any future cosmic web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.
We analyze the structure and connectivity of the distinct morphologies that define the Cosmic Web. With the help of our Multiscale Morphology Filter (MMF), we dissect the matter distribution of a cosmological $Lambda$CDM N-body computer simulation into cluster, filaments and walls. The MMF is ideally suited to adress both the anisotropic morphological character of filaments and sheets, as well as the multiscale nature of the hierarchically evolved cosmic matter distribution. The results of our study may be summarized as follows: i).- While all morphologies occupy a roughly well defined range in density, this alone is not sufficient to differentiate between them given their overlap. Environment defined only in terms of density fails to incorporate the intrinsic dynamics of each morphology. This plays an important role in both linear and non linear interactions between haloes. ii).- Most of the mass in the Universe is concentrated in filaments, narrowly followed by clusters. In terms of volume, clusters only represent a minute fraction, and filaments not more than 9%. Walls are relatively inconspicous in terms of mass and volume. iii).- On average, massive clusters are connected to more filaments than low mass clusters. Clusters with $M sim 10^{14}$ M$_{odot}$ h$^{-1}$ have on average two connecting filaments, while clusters with $M geq 10^{15}$ M$_{odot}$ h$^{-1}$ have on average five connecting filaments. iv).- Density profiles indicate that the typical width of filaments is 2$Mpch$. Walls have less well defined boundaries with widths between 5-8 Mpc h$^{-1}$. In their interior, filaments have a power-law density profile with slope ${gamma}approx -1$, corresponding to an isothermal density profile.