No Arabic abstract
Determinant Quantum Monte Carlo (DQMC) is used to determine the pairing and magnetic response for a Hubbard model built up from four-site clusters -a two-dimensional square lattice consisting of elemental 2x2 plaquettes with hopping $t$ and on-site repulsion $U$ coupled by an inter-plaquette hopping $t leq t$. Superconductivity in this geometry has previously been studied by a variety of analytic and numeric methods, with differing conclusions concerning whether the pairing correlations and transition temperature are raised near half-filling by the inhomogeneous hopping or not. For $U/t=4$, DQMC indicates an optimal $t/t approx 0.4$ at which the pairing vertex is most attractive. The optimal $t/t$ increases with $U/t$. We then contrast our results for this plaquette model with a Hamiltonian which instead involves a regular pattern of site energies whose large site energy limit is the three band CuO$_2$ model; we show that there the inhomogeneity rapidly, and monotonically, suppresses pairing.
Striped phases, in which spin, charge, and pairing correlations vary inhomogeneously in the CuO_2 planes, are a known experimental feature of cuprate superconductors, and are also found in a variety of numerical treatments of the two dimensional Hubbard Hamiltonian. In this paper we use determinant Quantum Monte Carlo to show that if a stripe density pattern is imposed on the model, the d-wave pairing vertex is significantly enhanced. We attribute this enhancement to an increase in antiferromagnetic order which is caused by the appearence of more nearly half-filled regions when the doped holes are confined to the stripes. We also observe a pi-phase shift in the magnetic order.
Fixed-node Greens function Monte Carlo calculations have been performed for very large 16x6 2D Hubbard lattices, large interaction strengths U=10,20, and 40, and many (15-20) densities between empty and half filling. The nodes were fixed by a simple Slater-Gutzwiller trial wavefunction. For each value of U we obtained a sequence of ground-state energies which is consistent with the possibility of a phase separation close to half-filling, with a hole density in the hole-rich phase which is a decreasing function of U. The energies suffer, however, from a fixed-node bias: more accurate nodes are needed to confirm this picture. Our extensive numerical results and their test against size, shell, shape and boundary condition effects also suggest that phase separation is quite a delicate issue, on which simulations based on smaller lattices than considered here are unlikely to give reliable predictions.
We have performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). Here we present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the filling and behavior of the fermion sign as a function of model parameters. We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model and examine the evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling. From this we find further evidence for a competition between charge-density-wave and antiferromagnetic order at half-filling.
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi liquid to Fermi liquid as a function of doping, indicating the presence of a quantum critical point separating non-Fermi liquid from Fermi liquid character. Marginal Fermi liquid character is found at low temperatures at a very narrow range of doping where the single-particle density of states is also symmetric. At higher doping the character of the quasiparticle fraction is seen to cross over from Fermi Liquid to Marginal Fermi liquid as the temperature increases.
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the ({pi},{pi}) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.