Do you want to publish a course? Click here

Supernovae and the Galactic Ecosystem

247   0   0.0 ( 0 )
 Added by Q. Daniel Wang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supernovae are the dominant source of stellar feedback, which plays an important role in regulating galaxy formation and evolution. While this feedback process is still quite uncertain, it is probably not due to individual supernova remnants as commonly observed. Most supernovae likely take place in low-density, hot gaseous environments, such as superbubbles and galactic bulges, and typically produce no long-lasting bright remnants. I review recent observational and theoretical work on the impact of such supernovae on galaxy ecosystems, particularly on hot gas in superbubbles and galactic spheroids.



rate research

Read More

Our Galaxy hosts the annihilation of a few $times 10^{43}$ low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesised in stars, stellar remnants, and supernovae. For decades, however, there has been no positive identification of a main stellar positron source leading to suggestions that many positrons originate from exotic sources like the Galaxys central super-massive black hole or dark matter annihilation. %, but such sources would not explain the recently-detected positron signal from the extended Galactic disk. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ~0.03 $M_odot$ of the positron emitter $^{44}$Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the solar system abundance of the $^{44}$Ti decay product $^{44}$Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN1991bg-like.
245 - C. M. Booth 2012
Energetic feedback from supernovae (SNe) and from active galactic nuclei (AGN) are both important processes that are thought to control how much gas is able to condense into galaxies and form stars. We show that although both AGN and SNe suppress star formation, they mutually weaken one anothers effect by up to an order of magnitude in haloes in the mass range for which both feedback processes are efficient (10^11.25 M_sun < m_200 < 10^12.5 M_sun). These results demonstrate the importance of the simultaneous, non-independent inclusion of these two processes in models of galaxy formation to estimate the total feedback strength. These results are of particular relevance to semi-analytic models, which implicitly assume the effects of the two feedback processes to be independent, and also to hydrodynamical simulations that model only one of the feedback processes.
We point out that the commonly assumed condition for galactic outflows, that supernovae (SNe) heating is efficient in the central regions of starburst galaxies, suffers from invalid assumptions. We show that a large filling factor of hot ($ge 10^6$ K) gas is difficult to achieve through SNe heating, irrespective of the initial gas temperature and density, and of its being uniform or clumpy. We instead suggest that correlated supernovae from OB associations in molecular clouds in the central region can drive powerful outflows if the molecular surface density is $> 10^3$ M$_{odot}$ pc$^{-2}$.
Cosmic ray (CR) sources leave signatures in the isotopic abundances of CRs. Current models of Galactic CRs that consider supernovae (SNe) shocks as the main sites of particle acceleration cannot satisfactorily explain the higher ${rm ^{22}Ne/^{20}Ne}$ ratio in CRs compared to the interstellar medium. Although stellar winds from massive stars have been invoked, their contribution relative to SNe ejecta has been taken as a free parameter. Here we present a theoretical calculation of the relative contributions of wind termination shocks (WTSs) and SNe shocks in superbubbles, based on the hydrodynamics of winds in clusters, the standard stellar mass function, and stellar evolution theory. We find that the contribution of WTSs towards the total CR production is at least $25%$, which rises to $gtrsim 50%$ for young ($lesssim 10$ Myr) clusters, and explains the observed $^{22}{rm Ne}/^{20} {rm Ne}$ ratio. We argue that since the progenitors of apparently isolated supernovae remnants (SNRs) are born in massive star clusters, both WTS and SNe shocks can be integrated into a combined scenario of CRs being accelerated in massive clusters. This scenario is consistent with the observed ratio of SNRs to $gamma$-ray bright ($L_gamma gtrsim 10^{35}$ erg s$^{-1}$) star clusters, as predicted by star cluster mass function. Moreover, WTSs can accelerate CRs to PeV energies, and solve other longstanding problems of the standard supernova paradigm of CR acceleration.
A good model of the Galactic magnetic field is crucial for estimating the Galactic contribution in dark matter and CMB-cosmology studies, determining the sources of UHECRs, and also modeling the transport of Galactic CRs since the halo field provides an important escape route for by diffusion along its field lines. We briefly review the observational foundations of the Jansson-Farrar 2012 model for the large scale structure of the GMF, underscoring the robust evidence for a N-to-S directed, spiraling halo field. New results on the lensing effect of the GMF on UHECRs are presented, displaying multiple images and dramatic magnification and demagnification that varies with source direction and CR rigidity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا