Do you want to publish a course? Click here

Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

342   0   0.0 ( 0 )
 Added by Roland M. Crocker
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our Galaxy hosts the annihilation of a few $times 10^{43}$ low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesised in stars, stellar remnants, and supernovae. For decades, however, there has been no positive identification of a main stellar positron source leading to suggestions that many positrons originate from exotic sources like the Galaxys central super-massive black hole or dark matter annihilation. %, but such sources would not explain the recently-detected positron signal from the extended Galactic disk. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ~0.03 $M_odot$ of the positron emitter $^{44}$Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the solar system abundance of the $^{44}$Ti decay product $^{44}$Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN1991bg-like.

rate research

Read More

Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.
Active galactic nuclei (AGN) with jets seen at small viewing angles are the most luminous and abundant objects in the $gamma$-ray sky. AGN with jets misaligned along the line-of-sight appear fainter in the sky, but are more numerous than the brighter blazars. We calculate the diffuse $gamma$-ray emission due to the population of misaligned AGN (MAGN) unresolved by the Large Area Telescope (LAT) on the {it Fermi} Gamma-ray Space Telescope ({it Fermi}). A correlation between the $gamma$-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on {it Fermi}-LAT data for a large sample of radio-loud MAGN. We constrain the derived $gamma$-ray luminosity function by means of the source count distribution of the radio galaxies (RGs) detected by the {it Fermi}-LAT. We finally calculate the diffuse $gamma$-ray flux due to the whole MAGN population. Our results demonstrate that the MAGN can contribute from 10% up to nearly the entire measured Isotropic Gamma-Ray Background (IGRB). We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.
68 - R. Raddi 2019
We report the discovery of three stars that, along with the prototype LP40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ONe-dominated atmospheres enriched with remarkably similar amounts of nuclear ashes of partial O- and Si-burning. Kinematic evidence is consistent with ejection from a binary supernova progenitor; at least two stars have rest-frame velocities indicating they are unbound to the Galaxy. With masses and radii ranging between 0.20-0.28 Msun and 0.16-0.60 Rsun, respectively, we speculate these inflated white dwarfs are the partly burnt remnants of either peculiar Type Iax or electron-capture supernovae. Adopting supernova rates from the literature, we estimate that ~20 LP40-365 stars brighter than 19 mag should be detectable within 2 kpc from the Sun at the end of the Gaia mission. We suggest that as they cool, these stars will evolve in their spectroscopic appearance, and eventually become peculiar O-rich white dwarfs. Finally, we stress that the discovery of new LP40-365 stars will be useful to further constrain their evolution, supplying key boundary conditions to the modelling of explosion mechanisms, supernova rates, and nucleosynthetic yields of peculiar thermonuclear explosions.
73 - Philipp Mertsch 2020
Despite significant efforts over the last decade, the origin of the cosmic ray positron excess has still not been unambiguously established. A popular class of candidates are pulsars or pulsar wind nebulae but these cannot account for the observed hard spectrum of cosmic ray antiprotons. We revisit the alternative possibility that the observed high-energy positrons are secondaries created by spallation in supernova remnants during the diffusive shock acceleration of the primary cosmic rays, which are further accelerated by the same shocks. The resulting source spectrum of positrons at high energies is then naturally harder than that of the primaries, as is the spectrum of other secondaries such as antiprotons. We present the first comprehensive investigation of the full parameter space of this model -- both the source parameters as well as those governing galactic transport. Various parameterisations of the cross-sections for the production of positrons and antiprotons are considered, and the uncertainty in the model parameters discussed. We obtain an excellent fit to the recent precision measurements by AMS-02 of cosmic ray protons, helium, positrons and antiprotons, as well as of various primary and secondary nuclei. The only notable deviation is an excess of antiprotons around ~10 GeV. This model thus provides an economical explanation of the spectra of all secondary species -- from a single well-motivated population of sources.
We examine the early phase intrinsic $(B-V)_{0}$ color evolution of a dozen Type~Ia supernovae discovered within three days of the inferred time of first light ($t_{first}$) and have $(B-V)_0$ color information beginning within 5 days of $t_{first}$. The sample indicates there are two distinct early populations. The first is a population exhibiting blue colors that slowlybevolve, and the second population exhibits red colors and evolves more rapidly. We find that the early-blue events are all 1991T/1999aa-like with more luminous slower declining light curves than those exhibiting early-red colors. Placing the first sample on the Branch diagram (i.e., ratio of ion{Si}{2} $lambdalambda$5972, 6355 pseudo-Equivalent widths) indicates all blue objects are of the Branch Shallow Silicon (SS) spectral type, while all early-red events except for the 2000cx-like SN~2012fr are of the Branch Core-Normal (CN) or CooL (CL) type. A number of potential processes contributing to the early emission are explored, and we find that, in general, the viewing-angle dependance inherent in the companion collision model is inconsistent with all SS objects with early-time observations being blue and exhibiting an excess. We caution that great care must be taken when interpreting early-phase light curves as there may be a variety of physical processes that are possibly at play and significant theoretical work remains to be done.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا