Do you want to publish a course? Click here

3C 273 - half a century later

125   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have presented an optical monitoring of 3C 273, the first quasar discovered fifty years ago. It does not show variability both on intra-night and long-term time scales. To facilitate the further monitoring of 3C 273, we compiled the available calibrations of the comparison stars in its field into a mean sequence.



rate research

Read More

131 - V. Esposito , R. Walter , P. Jean 2015
Aims. The high energy spectrum of 3C 273 is usually understood in terms of inverse-Compton emission in a relativistic leptonic jet. This model predicts variability patterns and delays that could be tested with simultaneous observations from the radio to the GeV range. Methods. The instruments IBIS, SPI, JEM-X on board INTEGRAL, PCA on board RXTE, and LAT on board Fermi have enough sensitivity to follow the spectral variability of 3C 273 from the keV to the GeV. We looked for correlations between the different energy bands, including radio data at 37 GHz collected at the Metsahovi Radio Observatory and built quasi-simultaneous multiwavelength spectra in the high energy domain when the source is flaring either in the X-rays or in the {gamma} rays. Results. Both temporal and spectral analysis suggest a two-component model to explain the complete high energy spectrum. X-ray emission is likely dominated by a Seyfert-like component while the {gamma}-ray emission is dominated by a blazar-like component produced by the relativistic jet. The variability of the blazar-like component is discussed, comparing the spectral parameters in the two different spectral states. Changes of the electron Lorentz factor are found to be the most likely source of the observed variability.
497 - S. Soldi , V. Beckmann , M. Turler 2009
We have analysed the first 15 months of Fermi/LAT data of the radio loud quasar 3C 273. Intense gamma-ray activity has been detected, showing an average flux of F(> 100 MeV) = 1.4e-6 ph/cm^2/s, with a peak at F(> 100 MeV) = 5.6e-6 ph/cm^2/s detected during a flare in September 2009. Together with the brightening of the source, a possible hardening of the gamma-ray spectrum is observed, pointing to a shift of the inverse Compton peak toward higher energies than the 1-10 MeV range in which 3C 273 inverse Compton emission is typically observed to peak. During the 15 months of observations the photon index is measured to vary between 2.4 and 3.3, with an average value of 2.78 +/- 0.03. When compared to the observations at other wavelengths, the gamma-rays show the largest flux variations and we discuss the possibility that two different components are responsible for the inverse Compton hump emission below and above the MeV peak.
Detailed investigation of broadband flux variability in the blazar 3C 273 allows us to probe the location and size of emission regions and their physical conditions. We report the results on correlation studies of the flaring activity observed between 2008 and 2012. The observed broadband variations were investigated using the structure function and the discrete correlation function, and power spectral density analysis (PSD) methods. The PSD analysis showed that the optical/IR light curve slopes are consistent with the slope of white noise processes, while, the PSD slopes at radio, X-ray and gamma-ray energies are consistent with red-noise processes. The flux variations at gamma-ray and mm-radio bands are found to be significantly correlated. Using the estimated time lag of (110pm27) days between gamma-ray and radio light curves, we constrained the location of the gamma-ray emission region at a de-projected distance of 1.2pm0.9 pc from the jet apex. Flux variations at X-ray bands were found to have a significant correlation with variations at both radio and gamma-rays energies. The correlation between X-rays and gamma-rays light curves suggests presence of two components responsible for the X-ray emission. A negative time lag of -(50pm20) days, where the X-rays are leading the emission, suggests X-rays are emitted closer to the jet apex from a compact region at a distance of ~(0.5pm0.4) pc from the jet apex. A positive time lag of (110pm20) days suggests jet-base origin of the other X-ray component at ~(4--5)~pc from the jet apex. The flux variations at radio frequencies were found to be well correlated with each other such that the variations at higher frequencies are leading the lower frequencies, which could be expected in the standard shock-in-jet model.
We present Space-VLBI RadioAstron observations at 1.6 GHz and 4.8 GHz of the flat spectrum radio quasar 3C 273, with detections on baselines up to 4.5 and 3.3 Earth Diameters, respectively. Achieving the best angular resolution at 1.6 GHz to date, we have imaged limb-brightening in the jet, not previously detected in this source. In contrast, at 4.8 GHz, we detected emission from a central stream of plasma, with a spatial distribution complementary to the limb-brightened emission, indicating an origin in the spine of the jet. While a stratification across the jet width in the flow density, internal energy, magnetic field, or bulk flow velocity are usually invoked to explain the limb-brightening, the different jet structure detected at the two frequencies probably requires a stratification in the emitting electron energy distribution. Future dedicated numerical simulations will allow the determination of which combination of physical parameters are needed to reproduce the spine/sheath structure observed by Space-VLBI with RadioAstron in 3C 273
176 - B. Rani 2013
We present a gamma-ray photon flux and spectral variability study of the flat-spectrum radio quasar 3C 273 over a rapid flaring activity period between September 2009 to April 2010. Five major flares are observed in the source during this period. The most rapid flare observed in the source has a flux doubling time of 1.1 hr. The rapid gamma-ray flares allow us to constrain the location and size of the gamma-ray emission region in the source. The gamma gamma-opacity constrains the Doppler factor, $delta_{gamma} geq$ 10 for the highest energy (15 GeV) photon observed by the {it Fermi}-Large Area Telescope (LAT). Causality arguments constrain the size of the emission region to 1.6$times 10^{15}$ cm. The gamma-ray spectra measured over this period show clear deviations from a simple power law with a break in 1-2 GeV energy range. We discuss possible explanations for the origin of the gamma-ray spectral breaks. Our study suggests that the gamma-ray emission region in 3C 273 is located within the broad line region ($<$1.6 pc). The spectral behavior and temporal characteristics of the individual flares indicate the presence of multiple shock scenarios at the base of the jet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا