Do you want to publish a course? Click here

Constraining the location of rapid gamma-ray flares in the FSRQ 3C 273

155   0   0.0 ( 0 )
 Added by Bindu Rani Ms.
 Publication date 2013
  fields Physics
and research's language is English
 Authors B. Rani




Ask ChatGPT about the research

We present a gamma-ray photon flux and spectral variability study of the flat-spectrum radio quasar 3C 273 over a rapid flaring activity period between September 2009 to April 2010. Five major flares are observed in the source during this period. The most rapid flare observed in the source has a flux doubling time of 1.1 hr. The rapid gamma-ray flares allow us to constrain the location and size of the gamma-ray emission region in the source. The gamma gamma-opacity constrains the Doppler factor, $delta_{gamma} geq$ 10 for the highest energy (15 GeV) photon observed by the {it Fermi}-Large Area Telescope (LAT). Causality arguments constrain the size of the emission region to 1.6$times 10^{15}$ cm. The gamma-ray spectra measured over this period show clear deviations from a simple power law with a break in 1-2 GeV energy range. We discuss possible explanations for the origin of the gamma-ray spectral breaks. Our study suggests that the gamma-ray emission region in 3C 273 is located within the broad line region ($<$1.6 pc). The spectral behavior and temporal characteristics of the individual flares indicate the presence of multiple shock scenarios at the base of the jet.



rate research

Read More

Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta <~ 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L_SSC <~ L_X, and from an upper limit on the efficient cooling photon energy E_cool,obs <~ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L_d. The commonly used intrinsic pair-production opacity constraint on Gamma is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Gamma*theta >~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/mm connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances, however, an extended broad-line region is an idea worth exploring.
Detailed investigation of broadband flux variability in the blazar 3C 273 allows us to probe the location and size of emission regions and their physical conditions. We report the results on correlation studies of the flaring activity observed between 2008 and 2012. The observed broadband variations were investigated using the structure function and the discrete correlation function, and power spectral density analysis (PSD) methods. The PSD analysis showed that the optical/IR light curve slopes are consistent with the slope of white noise processes, while, the PSD slopes at radio, X-ray and gamma-ray energies are consistent with red-noise processes. The flux variations at gamma-ray and mm-radio bands are found to be significantly correlated. Using the estimated time lag of (110pm27) days between gamma-ray and radio light curves, we constrained the location of the gamma-ray emission region at a de-projected distance of 1.2pm0.9 pc from the jet apex. Flux variations at X-ray bands were found to have a significant correlation with variations at both radio and gamma-rays energies. The correlation between X-rays and gamma-rays light curves suggests presence of two components responsible for the X-ray emission. A negative time lag of -(50pm20) days, where the X-rays are leading the emission, suggests X-rays are emitted closer to the jet apex from a compact region at a distance of ~(0.5pm0.4) pc from the jet apex. A positive time lag of (110pm20) days suggests jet-base origin of the other X-ray component at ~(4--5)~pc from the jet apex. The flux variations at radio frequencies were found to be well correlated with each other such that the variations at higher frequencies are leading the lower frequencies, which could be expected in the standard shock-in-jet model.
456 - S. Soldi , V. Beckmann , M. Turler 2009
We have analysed the first 15 months of Fermi/LAT data of the radio loud quasar 3C 273. Intense gamma-ray activity has been detected, showing an average flux of F(> 100 MeV) = 1.4e-6 ph/cm^2/s, with a peak at F(> 100 MeV) = 5.6e-6 ph/cm^2/s detected during a flare in September 2009. Together with the brightening of the source, a possible hardening of the gamma-ray spectrum is observed, pointing to a shift of the inverse Compton peak toward higher energies than the 1-10 MeV range in which 3C 273 inverse Compton emission is typically observed to peak. During the 15 months of observations the photon index is measured to vary between 2.4 and 3.3, with an average value of 2.78 +/- 0.03. When compared to the observations at other wavelengths, the gamma-rays show the largest flux variations and we discuss the possibility that two different components are responsible for the inverse Compton hump emission below and above the MeV peak.
The optical polarization plane of some blazars occasionally exhibits smooth hundred degree long rotations. Multiple theoretical models have been proposed to explain the nature of such events. A deterministic origin of these rotations, however, remains uncertain. We aim to find repeating patterns of flares in gamma-ray light curves of blazars, which accompany optical polarization plane rotations. Such patterns have been predicted to occur by one of the models explaining this phenomenon. For the blazar 3C 279, where multiple polarization plane rotations have been reported in the literature, we obtain the Fermi-LAT gamma-ray light curve and analyze its intervals adjacent to polarization plane rotations. We find a complex characteristic pattern of flares in the gamma-ray light curve that is repeated during periods adjacent to three large amplitude EVPA rotation events in 3C 279. We discover a hidden EVPA rotation, which can only be seen in the relative Stokes parameters plane and that occurred simultaneously with the fourth repetition of the pattern. This finding strongly favors the hypothesis of emission features propagating in the jet as the reason of optical polarization plane rotations. Furthermore, it is compatible with the hypothesis of a sheath in the jet comprised of more slowly propagating emission features.
207 - Mikhail Lisakov 2017
We present a comprehensive 5-43 GHz VLBA study of the blazar 3C 273 initiated after an onset of a strong $gamma$-ray flare in this source. We have analyzed the kinematics of new-born components, light curves, and position of the apparent core to pinpoint the location of the $gamma$-ray emission. Estimated location of the $gamma$-ray emission zone is close to the jet apex, 2 pc to 7 pc upstream from the observed 7 mm core. This is supported by ejection of a new component. The apparent core position was found to be inversely proportional to frequency. The brightness temperature in the 7 mm core reached values up to at least $10^{13}$ K during the flare. This supports the dominance of particle energy density over that of magnetic field in the 7 mm core. Particle density increased during the radio flare at the apparent jet base, affecting synchrotron opacity. This manifested itself as an apparent core shuttle along the jet during the 7 mm flare. It is also shown that a region where optical depth decreases from $tausim1$ to $tau<<1$ spans over several parsecs along the jet. The jet bulk flow speed estimated at the level of 12c on the basis of time lags between 7 mm light curves of stationary jet features is 1.5 times higher than that derived from VLBI apparent kinematics analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا