Do you want to publish a course? Click here

Soft x-ray photoemission study of new BiS$_{2}$-layered superconductor LaO$_{1-x}$F$_{x}$BiS$_{2}$

404   0   0.0 ( 0 )
 Added by Junki Sonoyama
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use core level and valence band soft x-ray photoemission spectroscopy (SXPES) to investigate electronic structure of new BiS$_{2}$ layered superconductor LaO$_{1-x}$F$_{x}$BiS$_{2}$. Core level spectra of doped samples show a new spectral feature at the lower binding energy side of the Bi 4${f}$ main peak, which may be explained by core-hole screening with metallic states near the Fermi level ($E_{rm F}$). Experimental electronic structure and its ${x}$ dependence (higher binding energy shift of the valence band as well as appearance of new states near $E_{rm F}$ having dominant Bi 6${p}$ character) were found to be consistent with the predictions of band structure calculations in general. Noticeable deviation of the spectral shape of the states near $E_{rm F}$ from that of calculations might give insight into the interesting physical properties. These results provide first experimental electronic structure of the new BiS$_{2}$ layered superconductors.



rate research

Read More

The newly discovered BiS$_2$-based LaO$_{1-x}$F$_{x}$BiS$_2$ ($x$=0.5) becomes superconductive at $T_c$=2.5 K. Electrical resistivity and magnetization measurements are performed under pressure to determine the pressure dependence of the superconducting transition temperature $T_c$. We observe that $T_c$ abruptly increases from 2.5 K to 10.7 K at a pressure of 0.7 GPa. According to high-pressure X-ray diffraction measurements, a structural phase transition from a tetragonal phase ($P$4/$nmm$) to a monoclinic phase ($P$2$_1/m$) also occurs at around $sim$ 1 GPa. We consider that a pressure-induced enhancement of superconductivity is caused by the structural phase transition.
A good description of the electronic structure of BiS$_{2}$-based superconductors is essential to understand their phase diagram, normal state and superconducting properties. To describe the first reports of normal state electronic structure features from angle resolved photoemission spectroscopy (ARPES) in LaO$_{1-x}$F$_{x}$BiS$_{2}$, we used a minimal microscopic model to study their low energy properties. It includes the two effective tight-binding bands proposed by Usui et al [Phys.Rev.B 86, 220501(R)(2012)], and we added moderate intra- and inter-orbital electron correlations related to Bi-($p_{Y}$, $p_{X}$) and S-($p_{Y}$, $p_{X}$) orbitals. We calculated the electron Greens functions using their equations of motion, which we decoupled in second-order of perturbations on the correlations. We determined the normal state spectral density function and total density of states for LaO$_{1-x}$F$_{x}$BiS$_{2}$, focusing on the description of the k-dependence, effect of doping, and the prediction of the temperature dependence of spectral properties. Including moderate electron correlations, improves the description of the few experimental ARPES and soft X-ray photoemission data available for LaO$_{1-x}$F$_{x}$BiS$_{2}$. Our analytical approximation enabled us to calculate the spectral density around the conduction band minimum at $vec{k}_{0}=(0.45pi,0.45pi)$, and to predict the temperature dependence of the spectral properties at different BZ points, which might be verified by temperature dependent ARPES.
142 - L. Jiao , Z. F. Weng , J. Z. Liu 2014
We measure the magnetic penetration depth $Deltalambda(T)$ for NdO$_{1-x}$F$_{x}$BiS$_{2}$ ($x$ = 0.3 and 0.5) using the tunnel diode oscillator technique. The $Deltalambda(T)$ shows an upturn in the low-temperature limit which is attributed to the paramagnetism of Nd ions. After subtracting the paramagnetic contributions, the penetration depth $Deltalambda(T)$ follows exponential-type temperature dependence at $Tll T_c$. Both $Deltalambda(T)$ and the corresponding superfluid density $rho_s(T)$ can be described by the BCS model with an energy gap of $Delta(0)$ $approx$ 2.0 $k_BT_c$ for both $x$ = 0.3 and 0.5, suggesting strong-coupling BCS superconductivity in the presence of localized moments for NdO$_{1-x}$F$_{x}$BiS$_{2}$.
F-doped LaOBiSe$_{2}$ superconducting single crystals with typical size of 2$times$4$times$0.2 mm$^{3}$ are successfully grown by flux method and the superconducting properties are studied. Both the superconducting transition temperature and the shielding volume fraction are effectively improved with fluorine doping. The LaO$_{0.48}$F$_{0.52}$BiSe$_{1.93}$ sample exhibits zero-resistivity at 3.7 K, which is higher than that of the LaO$_{0.5}$F$_{0.5}$BiSe$_{2}$ polycrystalline sample (2.4K). Bulk superconductivity is confirmed by a clear specific-heat jump at the associated temperature. The samples exhibit strong anisotropy and the anisotropy parameter is about 30, as estimated by the upper critical field and effective mass model
292 - Z. W. Zhu , Z. A. Xu , X. Lin 2008
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between $T_{c}$ and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا