Do you want to publish a course? Click here

$mathcal{D}$-maximal sets

115   0   0.0 ( 0 )
 Added by Peter Cholak
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Soare proved that the maximal sets form an orbit in $mathcal{E}$. We consider here $mathcal{D}$-maximal sets, generalizations of maximal sets introduced by Herrmann and Kummer. Some orbits of $mathcal{D}$-maximal sets are well understood, e.g., hemimaximal sets, but many are not. The goal of this paper is to define new invariants on computably enumerable sets and to use them to give a complete nontrivial classification of the $mathcal{D}$-maximal sets. Although these invariants help us to better understand the $mathcal{D}$-maximal sets, we use them to show that several classes of $mathcal{D}$-maximal sets break into infinitely many orbits.



rate research

Read More

We provide a proof that analytic almost disjoint families of infinite sets of integers cannot be maximal using a result of Bourgain about compact sets of Baire class one functions. Inspired by this and related ideas, we then provide a new proof of that there are no maximal almost disjoint families in Solovays model. We then use the ideas behind this proof to provide an extension of a dichotomy result by Rosenthal and by Bourgain, Fremlin and Talagrand to general pointwise bounded functions in Solovays model. We then show that the same conclusions can be drawn about the model obtained when we add a generic selective ultrafilter to the Solovay model.
100 - Amitayu Banerjee 2020
In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. 1. Every locally finite connected graph has a maximal independent set. 2. Every locally countable connected graph has a maximal independent set. 3. If in a partially ordered set all antichains are finite and all chains have size $aleph_{alpha}$, then the set has size $aleph_{alpha}$ if $aleph_{alpha}$ is regular. 4. Every partially ordered set has a cofinal well-founded subset. 5. If $G=(V_{G},E_{G})$ is a connected locally finite chordal graph, then there is an ordering $<$ of $V_{G}$ such that ${w < v : {w,v} in E_{G}}$ is a clique for each $vin V_{G}$.
96 - Juan P. Aguilera 2019
It is shown, from hypotheses in the region of $omega^2$ Woodin cardinals, that there is a transitive model of KP + AD$_mathbb{R}$ containing all reals.
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(Delta + log^* n)$ communication rounds; here $n$ is the number of nodes and $Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(log^* n)$ rounds even if $Delta = 2$. However, the dependency on $Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that maximal matchings and maximal independent sets cannot be found in $o(Delta + log log n / log log log n)$ rounds with any randomized algorithm in the LOCAL model of distributed computing. As a corollary, it follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in $o(Delta + log n / log log n)$ rounds; this is an improvement over prior lower bounds also as a function of $n$.
Harrington and Soare introduced the notion of an n-tardy set. They showed that there is a nonempty $mathcal{E}$ property Q(A) such that if Q(A) then A is 2-tardy. Since they also showed no 2-tardy set is complete, Harrington and Soare showed that there exists an orbit of computably enumerable sets such that every set in that orbit is incomplete. Our study of n-tardy sets takes off from where Harrington and Soare left off. We answer all the open questions asked by Harrington and Soare about n-tardy sets. We show there is a 3-tardy set A that is not computed by any 2-tardy set B. We also show that there are nonempty $mathcal{E}$ properties $Q_n(A)$ such that if $Q_n(A)$ then A is properly n-tardy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا