No Arabic abstract
We apply wavelets to identify the Triebel type oscillation spaces with the known Triebel-Lizorkin-Morrey spaces $dot{F}^{gamma_1,gamma_2}_{p,q}(mathbb{R}^{n})$. Then we establish a characterization of $dot{F}^{gamma_1,gamma_2}_{p,q}(mathbb{R}^{n})$ via the fractional heat semigroup. Moreover, we prove the continuity of Calderon-Zygmund operators on these spaces. The results of this paper also provide necessary tools for the study of well-posedness of Navier-Stokes equations.
We bring a precision to our cited work concerning the notion of Borel measures, as the choice among different existing definitions impacts on the validity of the results.
We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $sto 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ norm but BBM showed that the $W^{s,p}$ norm becomes the $H^{1,p} = F^{1}_{p,2}$ norm. Naively, for $p eq 2$ this seems like a contradiction, but we resolve this by providing embeddings of $W^{s,p}$ into $F^{s}_{p,q}$ for $q in {p,2}$ with sharp constants with respect to $s in (0,1)$. As a consequence we obtain an $mathbb{R}^N$-version of the BBM-result, and obtain several more embedding and convergence theorems of BBM-type that to the best of our knowledge are unknown.
Let $Dinmathbb{N}$, $qin[2,infty)$ and $(mathbb{R}^D,|cdot|,dx)$ be the Euclidean space equipped with the $D$-dimensional Lebesgue measure. In this article, via an auxiliary function space $mathrm{WE}^{1,,q}(mathbb R^D)$ defined via wavelet expansions, the authors establish the Riesz transform characterization of Triebel-Lizorkin spaces $dot{F}^0_{1,,q}(mathbb{R}^D)$. As a consequence, the authors obtain the Fefferman-Stein decomposition of Triebel-Lizorkin spaces $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Finally, the authors give an explicit example to show that $dot{F}^0_{1,,q}(mathbb{R}^D)$ is strictly contained in $mathrm{WE}^{1,,q}(mathbb{R}^D)$ and, by duality, $mathrm{WE}^{infty,,q}(mathbb{R}^D)$ is strictly contained in $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Although all results when $D=1$ were obtained by C.-C. Lin et al. [Michigan Math. J. 62 (2013), 691-703], as was pointed out by C.-C. Lin et al., the approach used in the case $D=1$ can not be applied to the case $Dge2$, which needs some new skills.
We characterize the Schauder and unconditional basis properties for the Haar system in the Triebel-Lizorkin spaces $F^s_{p,q}(Bbb R^d)$, at the endpoint cases $s=1$, $s=d/p-d$ and $p=infty$. Together with the earlier results in [10], [4], this completes the picture for such properties in the Triebel-Lizorkin scale, and complements a similar study for the Besov spaces given in [5].
In this article the authors study complex interpolation of Sobolev-Morrey spaces and their generalizations, Lizorkin-Triebel-Morrey spaces. Both scales are considered on bounded domains. Under certain conditions on the parameters the outcome belongs to the scale of the so-called diamond spaces.