Do you want to publish a course? Click here

Design and Analysis of High Frequency InN Tunnel Transistors

309   0   0.0 ( 0 )
 Added by Uttam Singisetti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work reports the design and analysis of an n-type tunneling field effect transistor based on InN. The tunneling current is evaluated from the fundamental principles of quantum mechanical tunneling and semiclassical carrier transport. We investigate the RF performance of the device. High transconductance of 2 mS/um and current gain cut-off frequency of around 460 GHz makes the device suitable for THz applications. A significant reduction in gate to drain capacitance is observed under relatively higher drain bias. In this regard, the avalanche breakdown phenomenon in highly doped InN junctions is analyzed quantitatively for the first time and is compared to that of Si and InAs.



rate research

Read More

We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm, we observe output current saturation and obtain as-measured, extrinsic current gain and power gain cut-off frequencies, respectively, of 7 GHz and 15 GHz. While the extrinsic current gain is comparable to the state-of-the-art the extrinsic power gain is improved. The de-embedded, intrinsic current gain and power gain cut-off frequencies of 153 GHz and 30 GHz are the highest values experimentally achieved to date. We analyze the consistency of DC and AC performance parameters and discuss the requirements for future applications of carbon nanotube array transistors in high-frequency electronics.
Reconfigurable magnetic tunnel diodes and transistors are a new concept in spintronics. The realization of such a device requires the use of materials with unique spin-dependent electronic properties such as half-metallic magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique platform to design within the same family of compounds HMMs and SGSs with similar lattice constants to make coherent growth of the consecutive spacers of the device possible. Employing state-of-the-art first-principles calculations, we scan the quaternary Heusler compounds and identify suitable candidates for these spintronic devices combining the desirable properties: (i) HMMs with sizable energy gap or SGSs with spin gaps both below and above the Fermi level, (ii) high Curie temperature, (iii) convex hull energy distance less than 0.20 eV, and (iv) negative formation energies. Our results pave the way for the experimental realization of the proposed magnetic tunnel diodes and transistors.
The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax.
Tunneling field-effect transistors (TFETs) based on 2D materials are promising steep sub-threshold swing (SS) devices due to their tight gate control. There are two major methods to create the tunnel junction in these 2D TFETs: electrical and chemical doping. In this work, design guidelines for both electrically and chemically doped 2D TFETs are provided using full band atomistic quantum transport simulations in conjunction with analytic modeling. Moreover, several 2D TFETs performance boosters such as strain, source doping, and equivalent oxide thickness (EOT) are studied. Later on, these performance boosters are analyzed within a novel figure-of-merit plot (i.e. constant ON-current plot).
The measurements of the high - temperature current - voltage characteristics of MoS2 thin - film transistors show that the devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the DC and pulse measurements shows that the DC sub - linear and super - linear output characteristics of MoS2 thin - films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, an intriguing phenomenon of the memory step - a kink in the drain current - occurs at zero gate voltage irrespective of the threshold voltage value. The memory step effect was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The obtained results suggest new applications for MoS2 thin - film transistors in extreme - temperature electronics and sensors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا