Do you want to publish a course? Click here

Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures

214   0   0.0 ( 0 )
 Added by Marijan Beg
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy. We also report the regions of metastability for non-ground state equilibrium configurations. We show that bistable skyrmionic textures undergo hysteretic behaviour between two energetically equivalent skyrmionic states with different core orientation, even in absence of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting the existence of Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show that the skyrmionic texture core reversal dynamics is facilitated by the Bloch point occurrence and propagation.



rate research

Read More

In confined helimagnetic nanostructures, skyrmionic states in the form of incomplete and isolated skyrmion states can emerge as the ground state in absence of both external magnetic field and magnetocrystalline anisotropy. In this work, we study the dynamic properties (resonance frequencies and corresponding eigenmodes) of skyrmionic states in thin film FeGe disk samples. We employ two different methods in finite-element based micromagnetic simulation: eigenvalue and ringdown method. The eigenvalue method allows us to identify all resonance frequencies and corresponding eigenmodes that can exist in the simulated system. However, using a particular experimentally feasible excitation can excite only a limited set of eigenmodes. Because of that, we perform ringdown simulations that resemble the experimental setup using both in-plane and out-of-plane excitations. In addition, we report the nonlinear dependence of resonance frequencies on the external magnetic bias field and disk sample diameter and discuss the possible reversal mode of skyrmionic states. We compare the power spectral densities of incomplete skyrmion and isolated skyrmion states and observe several key differences that can contribute to the experimental identification of the state present in the sample. We measure the FeGe Gilbert damping, and using its value we determine what eigenmodes can be expected to be observed in experiments. Finally, we show that neglecting the demagnetisation energy contribution or ignoring the magnetisation variation in the out-of-film direction - although not changing the eigenmodes magnetisation dynamics significantly - changes their resonance frequencies substantially. Apart from contributing to the understanding of skyrmionic states physics, this systematic work can be used as a guide for the experimental identification of skyrmionic states in confined helimagnetic nanostructures.
96 - Luis Brey 2017
We study a two-dimensional electron gas exchanged-coupled to a system of classical magnetic ions. For large Rashba spin-orbit coupling a single electron can become self-trapped in a skyrmion spin texture self-induced in the magnetic ions system. This new quasiparticle carries electrical and topological charge as well as a large spin, and we named it as magnetic skyrmionic polaron. We study the range of parameters; temperature, exchange coupling, Rashba coupling and magnetic field, for which the magnetic skyrmionic polaron is the fundamental state in the system. The dynamics of this quasiparticle is studied using the collective coordinate approximation, and we obtain that in presence of an electric field the new quasiparticle shows, because the chirality of the skyrmion, a Hall effect. Finally we argue that the magnetic skyrmionic polarons can be found in large Rashba spin-orbit coupling semiconductors as GeMnTe.
A nonlinear model representing the tribological problem of a thin solid lubricant layer between two sliding periodic surfaces is used to analyze the phenomenon of hysteresis at pinning/depinning around a moving state rather than around a statically pinned state. The cycling of an external driving force F_ext is used as a simple means to destroy and then to recover the dynamically pinned state previously discovered for the lubricant center-of-mass velocity. De-pinning to a quasi-freely sliding state occurs either directly, with a single jump, or through a sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of phase-locked states and stick-slip motion in static friction, and can be interpreted in terms of the appearance of travelling density defects in an otherwise regular arrangement of kinks. Re-pinning occurs more smoothly, through the successive disappearance of different travelling defects. The resulting bistability and multistability regions may also be explored by varying mechanical parameters other than F_ext, e.g. the sliding velocity or the corrugation amplitude of the sliders.
401 - Issai Shlimak 2004
Natural silicon consists of three stable isotopes with atomic mass 28 (92.21%), 29 (4.70%) and 30 (3.09%). To present day, isotopic enrichment of Si was used in electronics for two goals: (i) fabrication of substrates with high level of doping and homogeneous distribution of impurities and (ii) for fabrication of substrates with enhanced heat conduction which allows further chips miniaturization. For the first purpose, enrichment of Si with Si-30 is used, because after irradiation of a Si ingot by the thermal neutron flux in a nuclear reactor, this isotope transmutes into a phosphorus atom which is a donor impurity in Si. Enrichment of Si with Si-30 allows one to increase the level of doping up to a factor of 30 with a high homogeneity of the impurity distribution. The second purpose is achieved in Si highly enriched with isotope Si-28, because mono-isotopic Si is characterized by enhanced thermal conductivity. New potential of isotopically engineered Si comes to light because of novel areas of fundamental and applied scientific activity connected with spintronics and a semiconductor-based nuclear spin quantum computer where electron and/or nuclear spins are the object of manipulation. In this case, control of the abundance of nuclear spins is extremely important. Fortunately, Si allows such a control, because only isotope Si-29 has a non-zero nuclear spin. Therefore, enrichment or depletion of Si with isotope Si-29 will lead to the creation of a material with a controlled concentration of nuclear spins. Two examples of nano-devices for spintronics and quantum computation, based on isotopically engineered silicon, are discussed.
Three-dimensional (3D) topological Dirac semimetal is a new kind of material that has a linear energy dispersion in 3D momentum space and can be viewed as an analog of graphene. Extensive efforts have been devoted to the understanding of bulk materials, but yet it remains a challenge to explore the intriguing physics in low-dimensional Dirac semimetals. Here, we report on the synthesis of Cd3As2 nanowires and nanobelts and a systematic investigation of their magnetotransport properties. Temperature-dependent ambipolar behavior is evidently demonstrated, suggesting the presence of finite-size of bandgap in nanowires. Cd3As2 nanobelts, however, exhibit metallic characteristics with a high carrier mobility exceeding 32,000 cm2V-1s-1 and pronounced anomalous double-period Shubnikov-de Haas (SdH) oscillations. Unlike the bulk counterpart, the Cd3As2 nanobelts reveal the possibility of unusual change of the Fermi sphere owing to the suppression of the dimensionality. More importantly, their SdH oscillations can be effectively tuned by the gate voltage. The successful synthesis of Cd3As2 nanostructures and their rich physics open up exciting nanoelectronic applications of 3D Dirac semimetals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا