Do you want to publish a course? Click here

Nonlinear hysteretic behavior of a confined sliding layer

138   0   0.0 ( 0 )
 Added by Nicola Manini
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A nonlinear model representing the tribological problem of a thin solid lubricant layer between two sliding periodic surfaces is used to analyze the phenomenon of hysteresis at pinning/depinning around a moving state rather than around a statically pinned state. The cycling of an external driving force F_ext is used as a simple means to destroy and then to recover the dynamically pinned state previously discovered for the lubricant center-of-mass velocity. De-pinning to a quasi-freely sliding state occurs either directly, with a single jump, or through a sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of phase-locked states and stick-slip motion in static friction, and can be interpreted in terms of the appearance of travelling density defects in an otherwise regular arrangement of kinks. Re-pinning occurs more smoothly, through the successive disappearance of different travelling defects. The resulting bistability and multistability regions may also be explored by varying mechanical parameters other than F_ext, e.g. the sliding velocity or the corrugation amplitude of the sliders.



rate research

Read More

We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found to coexist in steady state with a surrounding granular liquid. By analogy to equilibrium hard sphere systems, the phase behavior can be explained through entropy maximization. However, dramatic non-equilibrium effects are present, including a significant difference in the granular temperatures of the two phases.
Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy. We also report the regions of metastability for non-ground state equilibrium configurations. We show that bistable skyrmionic textures undergo hysteretic behaviour between two energetically equivalent skyrmionic states with different core orientation, even in absence of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting the existence of Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show that the skyrmionic texture core reversal dynamics is facilitated by the Bloch point occurrence and propagation.
We report a kinetic Monte Carlo modeling study of nanocrystal layer sintering. Features that are of interest for the dynamics of the layer as a whole, especially the morphology of the evolving structure, are considered. It is found that the kinetics of sintering is not entirely a local process, with the layer morphology affected by the kinetics in a larger than few-particle neighborhood. Consideration of a single layer of particles makes the numerics manageable and allows visualization of the results, as well as numerical simulations of several realizations for statistical averaging of properties of interest. We identify optimal regimes for sintering, considering several particle size distributions and temperature control protocols.
Single-layer atom or vacancy clusters in the presence of electromigration are studied theoretically assuming an isotropic medium. A variety of distinctive behaviors distinguish the response in the three standard limiting cases of periphery diffusion (PD), terrace diffusion (TD), and evaporation-condensation (EC). A general model provides power laws describing the size dependence of the drift velocity in these limits, consistent with established results in the case of PD. The validity of the widely used quasistatic limit is calculated. Atom and vacancy clusters drift in opposite directions in the PD limit but in the same direction otherwise. In absence of PD, linear stability analysis reveals a new type of morphological instability, not leading to island break-down. For strong electromigration, Monte Carlo simulations show that clusters then destabilize into slits, in contrast to splitting in the PD limit. Electromigration affects the diffusion coefficient of the cluster and morphological fluctuations, the latter diverging at the instability threshold. An instrinsic attachment-detachment bias displays the same scaling signature as PD in the drift velocity.
We have elucidated the spin, lattice, charge and orbital coupling mechanism underlying the multiferroic character in tensile strained EuTiO3 films. Symmetry determined by oxygen octahedral tilting shapes the hybridization between the Eu 4f and Ti 3d orbitals and this inhibits predicted Ti displacement proper ferroelectricity. Instead, phonon softening emerges at low temperatures within the pseudo-cube (110) plane, orthogonal to the anticipated ferroelectric polarization symmetry. Additionally, the magnetic anisotropy is determined by orbital distortion through hybridization between the Ti 3d and typically isotropic Eu2+ 4f. This unique scenario demonstrates the critical role symmetry plays in the coupling of order parameters defining multiferroic behaviour.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا