Do you want to publish a course? Click here

Nuclear Physics Experiments with Ion Storage Rings

230   0   0.0 ( 0 )
 Added by Yuri Litvinov
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.



rate research

Read More

Storage rings have been employed over three decades in various kinds of nuclear and atomic physics experiments with highly charged ions. Storage ring operation and precision physics experiments benefit from the availability of beam cooling which is common to nearly all facilities. The basic aspects of the storage ring components and the operation of the ring in various ion-optical modes as well as the achievable beam conditions are described. Ion storage rings offer unparalleled capabilities for high precision experiments with stable and radioactive beams. The versatile techniques and methods for beam manipulations allow for preparing beams of highest quality at any energy of interest. The rings are therefore part of the experiment . Recent experiments conducted in a wide energy range and with various experimental installations are discussed. An overview of active and planned facilities, new experimental set-ups and proposed physics experiments completes this review.
119 - Y. G. Ma , X. Z. Cai , W. Q. Shen 2004
Based on the intermediate energy radioactive Ion Beam Line in Lanzhou (RIBLL) of Heavy Ion Research Facility in Lanzhou (HIRFL) and Low Energy Radioactive Ion Beam Line (GIRAFFE) of Beijing National Tandem Accelerator Lab (HI13), the radioactive ion beam physics and nuclear astrophysics will be researched in detail. The key scientific problems are: the nuclear structure and reaction for nuclear far from $beta$-stability line; the synthesize of new nuclides near drip lines and new super heavy nuclides; the properties of asymmetric nuclear matter with extra large isospin and some nuclear astro- reactions.
106 - Sebastian N. White 2005
Soon after the LHC is commissioned with proton beams the ATLAS experiment will begin studies of Pb-Pb collisions with a center of mass energy of ?sNN = 5.5 TeV. The ATLAS program is a natural extension of measurements at RHIC in a direction that exploits the higher LHC energies and the superb ATLAS calorimeter and tracking coverage. At LHC energies, collisions will be produced with even higher energy density than observed at RHIC. The properties of the resulting hot medium can be studied with higher energy probes, which are more directly interpreted through modification of jet properties emerging from these collisions, for example. Other topics which are enabled by the 30-fold increase in center of mass energy include probing the partonic structure of nuclei with hard photoproduction (in UltraPeripheral collisions) and in p-Pb collisions. Here we report on evaluation of ATLAS capabilities for Heavy Ion Physics.
218 - Michael A. Famiano 2019
Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.
Thin polypropylene (CH$_2$) fibers have been used for internal experiments in storage rings as an option for hydrogen targets. The change of the hydrogen content due to the radiation dose applied by the circulating proton beam has been investigated in the range $1cdot10^6$ to $2cdot10^8$~Gy at beam momenta of 1.5 to 3 GeV/c by comparing the elastic pp-scattering yield to that from inelastic p-carbon reactions. It is found that the loss of hydrogen as a function of applied dose receives contributions from a fast and a slow component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا