Do you want to publish a course? Click here

Evolution of ferroelectricity in tetrathiafulvalene-p-chloranil as a function of pressure and temperature

95   0   0.0 ( 0 )
 Added by Tomislav Ivek
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The neutral-to-ionic phase transition in the mixed-stack charge-transfer complex tetrathiafulvalene-p-chloranil (TTF-CA) has been studied by pressure-dependent infrared spectroscopy up to p=11 kbar and down to low temperatures, T = 10 K. By tracking the C=O antisymmetric stretching mode of CA molecules, we accurately determine the ionicity of TTF-CA in the pressure-temperature phase diagram. At any point the TTF-CA crystal bears only a single ionicity; there is no coexistence region or an exotic high-pressure phase. Our findings shed new light on the role of electron-phonon interaction in the neutral-ionic transition.



rate research

Read More

We report a detailed spectroscopic study of the pressure induced neutral-ionic phase transition (NIT) of the mixed-stack charge-transfer (CT) crystal tetrathiafulvalene-chloranil (TTF-CA). We show that the pressure induced phase transition is still first-order and involves the presence of an intermediate disordered phase, defined by the coexistence of two species of different ionicity. Further application of pressure gradually converts this phase into an homogeneous ferroelectric phase with a single ionicity. In addition, we detect strong pretransitional phenomena which anticipate the intermediate phase and are indicative of a precursor dynamic regime dominated by fluctuations.
Terahertz lights are usually generated through the optical rectification process within a femtosecond laser pulse in non-centrosymmetric materials. Here, we report a new generation mechanism of terahertz lights based upon a photoinduced phase transition (PIPT), in which an electronic structure is rapidly changed by a photoirradiation. When a ferroelectric organic molecular compound, tetrathiafulvalene-p-chloranil, is excited by a femtosecond laser pulse, the ionic-to-neutral transition is driven and simultaneously a strong terahertz radiation is produced. By analyzing the terahertz electric-field waveforms and their dependence on the polarization direction of the incident laser pulse, we demonstrate that the terahertz radiation originates from the ultrafast decrease of the spontaneous polarization in the photoinduced ionic-to-neutral transition. The efficiency of the observed terahertz radiation via the PIPT mechanism is found to be much higher than that via the optical rectification in the same material and in a typical terahertz emitter, ZnTe.
We report the evolution of the spin resonance in CeCoIn$_{5}$ as a function of magnetic field and lanthanum substitution. In both cases, the resonance peak position shifts to lower energy and the lineshape broadens. For La doping, it is found that the ratio $Omega_{res}/k_{B}T_{c}$ is almost constant as a function of $x$. Under magnetic field the decrease of the excitation energy is similar for H// [1,$bar{1}$,0] and [1,1,1] and faster than the decrease of $T_{c}(H)$. The Zeeman effect found for the field applied along [1,$bar{1}$,0] corresponds to the ground state magnetic moment.
We have studied the pressure dependence of the magnetization of single crystalline CeSi_1.81. At ambient pressure ferromagnetism develops below T_C = 9.5 Below ~ 5 K an additional shoulder in low-field hysteresis loops and a metamagnetic crossover around 4 T suggest the appearance of an additional magnetic modulation to the ferromagnetic state. The suppression of the magnetic order in CeSi_1.81 as function of temperature at ambient pressure and as function of pressure at low temperature are in remarkable qualitative agreement. The continuous suppression of the ordered moment at p ~ 13.1 kbar suggests the existence of a ferromagnetic quantum critical point in this material.
The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numericallinked-cluster (NLC) calculation method for an effective anisotropic-exchange spin-1/2 Hamiltonian with parameters recently determined by fitting the neutron scattering spin wave data obtained at high magnetic field h. Magnetization, M(T,h), as a function of temperature T and for different magnetic fields h applied along the three high symmetry directions [100], [110] and [111], are compared with experimental measurements on the material for temperature T>1.8K. The excellent agreement between experimentally measured and calculated M(T,h) over the entire temperature and magnetic field range considered provides strong quantitative validation of the effective Hamiltonian. It also confirms that fitting the high-field neutron spin wave spectra in the polarized paramagnetic state is an excellent method for determining the microscopic exchange constants of rare-earth insulating magnets that are described by an effective spin-1/2 Hamiltonian. Finally, we present results which demonstrate that a recent analysis of the polarized neutron scattering intensity of Yb2Ti2O7 using a random phase approximation (RPA) method [Chang et al., Nature Communications {3}, 992 (2012)] does not provide a good description of M(T,h) for $Tlesssim 10$ K, that is in the entire temperature regime where correlations become non-negligible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا