Do you want to publish a course? Click here

Electrokinetic Effects in Catalytic Pt-Insulator Janus Swimmers

227   0   0.0 ( 0 )
 Added by Ramin Golestanian
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effect of added salt on the propulsion of Janus platinum-polystyrene colloids in hydrogen peroxide solution is studied experimentally. It is found that micromolar quantities of potassium and silver nitrate salts reduce the swimming velocity by similar amounts, while leading to significantly different effects on the overall rate of catalytic breakdown of hydrogen peroxide. It is argued that the seemingly paradoxical experimental observations could be theoretically explained by using a generalised reaction scheme that involves charged intermediates and has the topology of two nested loops.



rate research

Read More

We investigate the way in which oscillating dumb-bells, a simple microscopic model of apolar swimmers, move at low Reynolds number. In accordance with Purcells Scallop Theorem a single dumb-bell cannot swim because its stroke is reciprocal in time. However the motion of two or more dumb-bells, with mutual phase differences, is not time reversal invariant, and hence swimming is possible. We use analytical and numerical solutions of the Stokes equations to calculate the hydrodynamic interaction between two dumb-bell swimmers and to discuss their relative motion. The cooperative effect of interactions between swimmers is explored by considering first regular, and then random arrays of dumb-bells. We find that a square array acts as a micropump. The long time behaviour of suspensions of dumb-bells is investigated and compared to that of model polar swimmers.
A system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing inter-particle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations.
Fish schools and bird flocks exhibit complex collective dynamics whose self-organization principles are largely unknown. The influence of hydrodynamics on such collectives has been relatively unexplored theoretically, in part due to the difficulty in modeling the temporally long-lived hydrodynamic interactions between many dynamic bodies. We address this through a novel discrete-time dynamical system (iterated map) that describes the hydrodynamic interactions between flapping swimmers arranged in one- and two-dimensional lattice formations. Our 1D results exhibit good agreement with previously published experimental data, in particular predicting the bistability of schooling states and new instabilities that can be probed in experimental settings. For 2D lattices, we determine the formations for which swimmers optimally benefit from hydrodynamic interactions. We thus obtain the following hierarchy: while a side-by-side single-row phalanx formation offers a small improvement over a solitary swimmer, 1D in-line and 2D rectangular lattice formations exhibit substantial improvements, with the 2D diamond lattice offering the largest hydrodynamic benefit. Generally, our self-consistent modeling framework may be broadly applicable to active systems in which the collective dynamics is primarily driven by a fluid-mediated memory.
Surface interactions provide a class of mechanisms which can be employed for propulsion of micro- and nanometer sized particles. We investigate the related efficiency of externally and self-propelled swimmers. A general scaling relation is derived showing that only swimmers whose size is comparable to, or smaller than, the interaction range can have appreciable efficiency. An upper bound for efficiency at maximum power is 1/2. Numerical calculations for the case of diffusiophoresis are found to be in good agreement with analytical expressions for the efficiency.
Catalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. We here report experimental measurements of significantly different velocities of such microswimmers in the vicinity of substrates made from different materials. We find that velocities scale with the solution contact angle $theta$ on the substrate, which in turn relates to the associated hydrodynamic substrate slip length, as $Vpropto(costheta+1)^{-3/2}$. We show that such dependence can be attributed to osmotic coupling between swimmers and substrate. Our work points out that hydrodynamic slip at the wall, though often unconsidered, can significantly impact the self-propulsion of catalytic swimmers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا