No Arabic abstract
We investigate the way in which oscillating dumb-bells, a simple microscopic model of apolar swimmers, move at low Reynolds number. In accordance with Purcells Scallop Theorem a single dumb-bell cannot swim because its stroke is reciprocal in time. However the motion of two or more dumb-bells, with mutual phase differences, is not time reversal invariant, and hence swimming is possible. We use analytical and numerical solutions of the Stokes equations to calculate the hydrodynamic interaction between two dumb-bell swimmers and to discuss their relative motion. The cooperative effect of interactions between swimmers is explored by considering first regular, and then random arrays of dumb-bells. We find that a square array acts as a micropump. The long time behaviour of suspensions of dumb-bells is investigated and compared to that of model polar swimmers.
Fish schools and bird flocks exhibit complex collective dynamics whose self-organization principles are largely unknown. The influence of hydrodynamics on such collectives has been relatively unexplored theoretically, in part due to the difficulty in modeling the temporally long-lived hydrodynamic interactions between many dynamic bodies. We address this through a novel discrete-time dynamical system (iterated map) that describes the hydrodynamic interactions between flapping swimmers arranged in one- and two-dimensional lattice formations. Our 1D results exhibit good agreement with previously published experimental data, in particular predicting the bistability of schooling states and new instabilities that can be probed in experimental settings. For 2D lattices, we determine the formations for which swimmers optimally benefit from hydrodynamic interactions. We thus obtain the following hierarchy: while a side-by-side single-row phalanx formation offers a small improvement over a solitary swimmer, 1D in-line and 2D rectangular lattice formations exhibit substantial improvements, with the 2D diamond lattice offering the largest hydrodynamic benefit. Generally, our self-consistent modeling framework may be broadly applicable to active systems in which the collective dynamics is primarily driven by a fluid-mediated memory.
A system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing inter-particle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations.
Surface interactions provide a class of mechanisms which can be employed for propulsion of micro- and nanometer sized particles. We investigate the related efficiency of externally and self-propelled swimmers. A general scaling relation is derived showing that only swimmers whose size is comparable to, or smaller than, the interaction range can have appreciable efficiency. An upper bound for efficiency at maximum power is 1/2. Numerical calculations for the case of diffusiophoresis are found to be in good agreement with analytical expressions for the efficiency.
The effect of added salt on the propulsion of Janus platinum-polystyrene colloids in hydrogen peroxide solution is studied experimentally. It is found that micromolar quantities of potassium and silver nitrate salts reduce the swimming velocity by similar amounts, while leading to significantly different effects on the overall rate of catalytic breakdown of hydrogen peroxide. It is argued that the seemingly paradoxical experimental observations could be theoretically explained by using a generalised reaction scheme that involves charged intermediates and has the topology of two nested loops.
We examine the motion of rigid, ellipsoidal swimmers subjected to a steady vortex flow in two dimensions. Numerical simulations of swimmers in a spatially periodic array of vortices reveal a range of possible behaviors, including trapping inside a single vortex and motility-induced diffusion across many vortices. While the trapping probability vanishes at a sufficiently high swimming speed, we find that it exhibits surprisingly large oscillations as this critical swimming speed is approached. Strikingly, at even higher swimming speeds, we find swimmers that swim perpendicular to their elongation direction can again become trapped. To explain this complex behavior, we investigate the underlying swimmer phase-space geometry. We identify the fixed points and periodic orbits of the swimmer equations of motion that regulate swimmer trapping inside a single vortex cell. For low to intermediate swimming speeds, we find that a stable periodic orbit surrounded by invariant tori forms a transport barrier to swimmers and can trap them inside individual vortices. For swimming speeds approaching the maximum fluid speed, we find instead that perpendicular swimmers can be trapped by asymptotically stable fixed points. A bifurcation analysis of the stable periodic orbit and the fixed points explains the complex and non-monotonic breakdown and reemergence of swimmer trapping as the swimmer speed and shape are varied.