Do you want to publish a course? Click here

Extinction of solutions to a class of fast diffusion systems with nonlinear sources

284   0   0.0 ( 0 )
 Added by Yuzhu Han
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, the finite time extinction of solutions to the fast diffusion system $u_t=mathrm{div}(| abla u|^{p-2} abla u)+v^m$, $v_t=mathrm{div}(| abla v|^{q-2} abla v)+u^n$ is investigated, where $1<p,q<2$, $m,n>0$ and $Omegasubset mathbb{R}^N (Ngeq1)$ is a bounded smooth domain. After establishing the local existence of weak solutions, the authors show that if $mn>(p-1)(q-1)$, then any solution vanishes in finite time provided that the initial data are ``comparable; if $mn=(p-1)(q-1)$ and $Omega$ is suitably small, then the existence of extinction solutions for small initial data is proved by using the De Giorgi iteration process and comparison method. On the other hand, for $1<p=q<2$ and $mn<(p-1)^2$, the existence of at least one non-extinction solution for any positive smooth initial data is proved.



rate research

Read More

We study extinction profiles of solutions to fast diffusion equations with some initial data in the Marcinkiewicz space. The extinction profiles will be the singular solutions of their stationary equations.
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
In this paper we are concerned with the regularity of solutions to a nonlinear elliptic system of $m$ equations in divergence form, satisfying $p$ growth from below and $q$ growth from above, with $p leq q$; this case is known as $p, q$-growth conditions. Well known counterexamples, even in the simpler case $p=q$, show that solutions to systems may be singular; so, it is necessary to add suitable structure conditions on the system that force solutions to be regular. Here we obtain local boundedness of solutions under a componentwise coercivity condition. Our result is obtained by proving that each component $u^alpha$ of the solution $u=(u^1,...,u^m)$ satisfies an improved Caccioppolis inequality and we get the boundedness of $u^{alpha}$ by applying De Giorgis iteration method, provided the two exponents $p$ and $q$ are not too far apart. Let us remark that, in dimension $n=3$ and when $p=q$, our result works for $frac{3}{2} < p < 3$, thus it complements the one of Bjorn whose technique allowed her to deal with $p leq 2$ only. In the final section, we provide applications of our result.
144 - Kin Ming Hui 2014
Let $nge 3$, $0<m<frac{n-2}{n}$, $rho_1>0$, $betagefrac{mrho_1}{n-2-nm}$ and $alpha=frac{2beta+rho_1}{1-m}$. For any $lambda>0$, we will prove the existence and uniqueness (for $betagefrac{rho_1}{n-2-nm}$) of radially symmetric singular solution $g_{lambda}in C^{infty}(R^nsetminus{0})$ of the elliptic equation $Delta v^m+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$, satisfying $displaystylelim_{|x|to 0}|x|^{alpha/beta}g_{lambda}(x)=lambda^{-frac{rho_1}{(1-m)beta}}$. When $beta$ is sufficiently large, we prove the higher order asymptotic behaviour of radially symmetric solutions of the above elliptic equation as $|x|toinfty$. We also obtain an inversion formula for the radially symmetric solution of the above equation. As a consequence we will prove the extinction behaviour of the solution $u$ of the fast diffusion equation $u_t=Delta u^m$ in $R^ntimes (0,T)$ near the extinction time $T>0$.
We prove global essential boundedness for the weak solutions of divergence form quasilinear systems. The principal part of the differential operator is componentwise coercive and supports controlled growths with respect to the solution and its gradient, while the lower order term exhibits componentwise controlled gradient growth. The x-behaviour of the nonlinearities is governed in terms of Morrey spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا