Do you want to publish a course? Click here

Ontological metaphors for negative energy in an interdisciplinary context

81   0   0.0 ( 0 )
 Added by Benjamin Dreyfus
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Teaching about energy in interdisciplinary settings that emphasize coherence among physics, chemistry, and biology leads to a more central role for chemical bond energy. We argue that an interdisciplinary approach to chemical energy leads to modeling chemical bonds in terms of negative energy. While recent work on ontological metaphors for energy has emphasized the affordances of the substance ontology, this ontology is problematic in the context of negative energy. Instead, we apply a dynamic ontologies perspective to argue that blending the substance and location ontologies for energy can be effective in reasoning about negative energy in the context of reasoning about chemical bonds. We present data from an introductory physics for the life sciences (IPLS) course in which both experts and students successfully use this blended ontology. Blending these ontologies is most successful when the substance and location ontologies are combined such that each is strategically utilized in reasoning about particular aspects of energetic processes.



rate research

Read More

Much recent work in physics education research has focused on ontological metaphors for energy, particularly the substance ontology and its pedagogical affordances. The concept of negative energy problematizes the substance ontology for energy, but in many instructional settings, the specific difficulties around negative energy are outweighed by the general advantages of the substance ontology. However, we claim that our interdisciplinary setting (a physics class that builds deep connections to biology and chemistry) leads to a different set of considerations and conclusions. In a course designed to draw interdisciplinary connections, the centrality of chemical bond energy in biology necessitates foregrounding negative energy from the beginning. We argue that the emphasis on negative energy requires a combination of substance and location ontologies. The location ontology enables energies both above and below zero. We present preliminary student data that illustrate difficulties in reasoning about negative energy, and the affordances of the location metaphor.
132 - Carmen Fies , Chris Packham 2021
Secondary school teachers often lack the necessary content background in astronomy to teach such a course confidently. Our theory of change postits that an increased confidence level will increase student retention in astronomy and related STEM fields. Beyond the science content knowledge though, teachers need opportunities to embed the content in pedagogically sound practices, and with appropriate technology tools. We report on our interdisciplinary approach to designing, developing, fielding, and iteratively improving the San Antonio Teacher Training Astronomy Academy (SATTAA), an annually offered Teacher Professional Development program. In particular, we present how our separate areas of expertise, in content and in STEM pedagogy, led to a synergistic process of teacher professional development that has now resulted in three cohorts of alumni. In this paper, we share our interdisciplinary processes and lessons learned; program metrics are described elsewhere in detail.
Energy is a complex idea that cuts across scientific disciplines. For life science students, an approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy. We present a curricular sequence, or thread, designed to build up students understanding of chemical energy in an introductory physics course for the life sciences. This thread is designed to connect ideas about energy from physics, biology, and chemistry. We describe the kinds of connections among energetic concepts that we intended to develop to build interdisciplinary coherence, and present some examples of curriculum materials and student data that illustrate our approach.
346 - Mark Lee , John Barnden 1999
Mixed metaphors have been neglected in recent metaphor research. This paper suggests that such neglect is short-sighted. Though mixing is a more complex phenomenon than straight metaphors, the same kinds of reasoning and knowledge structures are required. This paper provides an analysis of both parallel and serial mixed metaphors within the framework of an AI system which is already capable of reasoning about straight metaphorical manifestations and argues that the processes underlying mixing are central to metaphorical meaning. Therefore, any theory of metaphors must be able to account for mixing.
Our uncertainties about binary star systems (and triples and so on) limit our capabilities in literally every single one of the Thematic Areas identified for Astro2020. We need to understand the population statistics of stellar multiplicity and their variations with stellar type, chemistry, and dynamical environment: Correct interpretation of any exoplanet experiment depends on proper treatment of resolved and unresolved binaries; stellar multiplicity is a direct outcome of star and companion formation; the most precise constraints on stellar structure come from well-characterized binary systems; stellar populations heavily rely on stellar and binary evolution modeling; high-redshift galaxy radiation and reionization is controlled by binary-dependent stellar physics; compact objects are the outcomes of binary evolution; the interpretation of multi-messenger astronomy from gravitational waves, light, and neutrinos relies on understanding the products of binary star evolution; near-Universe constraints on the Hubble constant with Type Ia supernovae and gravitational-wave mergers are subject to systematics related to their binary star progenitors; local measures of dark-matter substructure masses are distorted by binary populations. In order to realize the scientific goals in each of these themes over the next decade, we therefore need to understand how binary stars and stellar multiplets are formed and distributed in the space of masses, composition, age, and orbital properties, and how the distribution evolves with time. This white paper emphasizes the interdisciplinary importance of binary-star science and advocates that coordinated investment from all astrophysical communities will benefit almost all branches of astrophysics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا