No Arabic abstract
We study the symplectic geometry of the Jaynes-Cummings-Gaudin model with $n=2m-1$ spins. We show that there are focus-focus singularities of maximal Williamson type $(0,0,m)$. We construct the linearized normal flows in the vicinity of such a point and show that soliton type solutions extend them globally on the critical torus. This allows us to compute the leading term in the Taylor expansion of the symplectic invariants and the monodromy associated to this singularity.
About 6 years ago, semitoric systems were classified by Pelayo & Vu Ngoc by means of five invariants. Standard examples are the coupled spin oscillator on $mathbb{S}^2 times mathbb{R}^2$ and coupled angular momenta on $mathbb{S}^2 times mathbb{S}^2$, both having exactly one focus-focus singularity. But so far there were no explicit examples of systems with more than one focus-focus singularity which are semitoric in the sense of that classification. This paper introduces a 6-parameter family of integrable systems on $mathbb{S}^2 times mathbb{S}^2$ and proves that, for certain ranges of the parameters, it is a compact semitoric system with precisely two focus-focus singularities. Since the twisting index (one of the semitoric invariants) is related to the relationship between different focus-focus points, this paper provides systems for the future study of the twisting index.
The Dicke model is derived in the contraction limit of a pseudo-deformation of the quasispin algebra in the su(2)-based Richardson-Gaudin models. Likewise, the integrability of the Dicke model is established by constructing the full set of conserved charges, the form of the Bethe Ansatz state, and the associated Richardson-Gaudin equations. Thanks to the formulation in terms of the pseudo-deformation, the connection from the su(2)-based Richardson-Gaudin model towards the Dicke model can be performed adiabatically.
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with periodic and regular quasi-periodic boundary conditions.
We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takenss index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko-Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed.
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint spectrum of the Hamilton operator, the $z$ component of the angular momentum, and a quartic integral obtained from separation in prolate spheroidal coordinates has quantum monodromy for sufficiently large energies. This means that one cannot globally assign quantum numbers to the joint spectrum. The effect can be classically explained by showing that the corresponding Liouville integrable system has a non-degenerate focus-focus point, and hence Hamiltonian monodromy.