Do you want to publish a course? Click here

A fractional Brownian field indexed by $L^2$ and a varying Hurst parameter

169   0   0.0 ( 0 )
 Added by Alexandre Richard
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Using structures of Abstract Wiener Spaces, we define a fractional Brownian field indexed by a product space $(0,1/2] times L^2(T,m)$, $(T,m)$ a separable measure space, where the first coordinate corresponds to the Hurst parameter of fractional Brownian motion. This field encompasses a large class of existing fractional Brownian processes, such as Levy fractional Brownian motions and multiparameter fractional Brownian motions, and provides a setup for new ones. We prove that it has satisfactory incremental variance in both coordinates and derive certain continuity and Holder regularity properties in relation with metric entropy. Also, a sharp estimate of the small ball probabilities is provided, generalizing a result on Levy fractional Brownian motion. Then, we apply these general results to multiparameter and set-indexed processes, proving the existence of processes with prescribed local Holder regularity on general indexing collections.



rate research

Read More

In this paper we develop sensitivity analyses w.r.t. the long-range/memory noise parameter for solutions to stochastic differential equations and the probability distributions of their first passage times at given thresholds. Here we consider the case of stochastic differential equations driven by fractional Brownian motions and the sensitivity, when the Hurst parameter~$H$ of the noise tends to the pure Brownian value, of probability distributions of certain functionals of the trajectories of the solutions ${X^H_t}_{tin mathbb{R}_+}$. We first get accurate sensitivity estimates w.r.t. $H$ around the critical Brownian parameter $H=tfrac{1}{2}$ of time marginal probability distributions of $X^H$. We second develop a sensitivity analysis for the Laplace transform of first passage time of $X^H$ at a given threshold. Our technique requires accurate Gaussian estimates on the density of $X^H_t$. The Gaussian estimate we obtain in Section~5 may be of interest by itself.
In this paper, we study the $frac{1}{H}$-variation of stochastic divergence integrals $X_t = int_0^t u_s {delta}B_s$ with respect to a fractional Brownian motion $B$ with Hurst parameter $H < frac{1}{2}$. Under suitable assumptions on the process u, we prove that the $frac{1}{H}$-variation of $X$ exists in $L^1({Omega})$ and is equal to $e_H int_0^T|u_s|^H ds$, where $e_H = mathbb{E}|B_1|^H$. In the second part of the paper, we establish an integral representation for the fractional Bessel Process $|B_t|$, where $B_t$ is a $d$-dimensional fractional Brownian motion with Hurst parameter $H < frac{1}{2}$. Using a multidimensional version of the result on the $frac{1}{H}$-variation of divergence integrals, we prove that if $2dH^2 > 1$, then the divergence integral in the integral representation of the fractional Bessel process has a $frac{1}{H}$-variation equals to a multiple of the Lebesgue measure.
Within the rough path framework we prove the continuity of the solution to random differential equations driven by fractional Brownian motion with respect to the Hurst parameter $H$ when $H in (1/3, 1/2]$.
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter $H$.
189 - Alexandre Richard 2015
We are interested in the increment stationarity property for $L^2$-indexed stochastic processes, which is a fairly general concern since many random fields can be interpreted as the restriction of a more generally defined $L^2$-indexed process. We first give a spectral representation theorem in the sense of citet{Ito54}, and see potential applications on random fields, in particular on the $L^2$-indexed extension of the fractional Brownian motion. Then we prove that this latter process is characterized by its increment stationarity and self-similarity properties, as in the one-dimensional case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا