Do you want to publish a course? Click here

Unsupervised feature learning by augmenting single images

97   0   0.0 ( 0 )
 Added by Alexey Dosovitskiy
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

When deep learning is applied to visual object recognition, data augmentation is often used to generate additional training data without extra labeling cost. It helps to reduce overfitting and increase the performance of the algorithm. In this paper we investigate if it is possible to use data augmentation as the main component of an unsupervised feature learning architecture. To that end we sample a set of random image patches and declare each of them to be a separate single-image surrogate class. We then extend these trivial one-element classes by applying a variety of transformations to the initial seed patches. Finally we train a convolutional neural network to discriminate between these surrogate classes. The feature representation learned by the network can then be used in various vision tasks. We find that this simple feature learning algorithm is surprisingly successful, achieving competitive classification results on several popular vision datasets (STL-10, CIFAR-10, Caltech-101).



rate research

Read More

Convolutional neural networks for visual recognition require large amounts of training samples and usually benefit from data augmentation. This paper proposes PatchMix, a data augmentation method that creates new samples by composing patches from pairs of images in a grid-like pattern. These new samples ground truth labels are set as proportional to the number of patches from each image. We then add a set of additional losses at the patch-level to regularize and to encourage good representations at both the patch and image levels. A ResNet-50 model trained on ImageNet using PatchMix exhibits superior transfer learning capabilities across a wide array of benchmarks. Although PatchMix can rely on random pairings and random grid-like patterns for mixing, we explore evolutionary search as a guiding strategy to discover optimal grid-like patterns and image pairing jointly. For this purpose, we conceive a fitness function that bypasses the need to re-train a model to evaluate each choice. In this way, PatchMix outperforms a base model on CIFAR-10 (+1.91), CIFAR-100 (+5.31), Tiny Imagenet (+3.52), and ImageNet (+1.16) by significant margins, also outperforming previous state-of-the-art pairwise augmentation strategies.
334 - Feng Wang , Huaping Liu , Di Guo 2020
Unsupervised learning methods based on contrastive learning have drawn increasing attention and achieved promising results. Most of them aim to learn representations invariant to instance-level variations, which are provided by different views of the same instance. In this paper, we propose Invariance Propagation to focus on learning representations invariant to category-level variations, which are provided by different instances from the same category. Our method recursively discovers semantically consistent samples residing in the same high-density regions in representation space. We demonstrate a hard sampling strategy to concentrate on maximizing the agreement between the anchor sample and its hard positive samples, which provide more intra-class variations to help capture more abstract invariance. As a result, with a ResNet-50 as the backbone, our method achieves 71.3% top-1 accuracy on ImageNet linear classification and 78.2% top-5 accuracy fine-tuning on only 1% labels, surpassing previous results. We also achieve state-of-the-art performance on other downstream tasks, including linear classification on Places205 and Pascal VOC, and transfer learning on small scale datasets.
Deep convolutional networks have proven to be very successful in learning task specific features that allow for unprecedented performance on various computer vision tasks. Training of such networks follows mostly the supervised learning paradigm, where sufficiently many input-output pairs are required for training. Acquisition of large training sets is one of the key challenges, when approaching a new task. In this paper, we aim for generic feature learning and present an approach for training a convolutional network using only unlabeled data. To this end, we train the network to discriminate between a set of surrogate classes. Each surrogate class is formed by applying a variety of transformations to a randomly sampled seed image patch. In contrast to supervised network training, the resulting feature representation is not class specific. It rather provides robustness to the transformations that have been applied during training. This generic feature representation allows for classification results that outperform the state of the art for unsupervised learning on several popular datasets (STL-10, CIFAR-10, Caltech-101, Caltech-256). While such generic features cannot compete with class specific features from supervised training on a classification task, we show that they are advantageous on geometric matching problems, where they also outperform the SIFT descriptor.
In this paper, we propose an instance similarity learning (ISL) method for unsupervised feature representation. Conventional methods assign close instance pairs in the feature space with high similarity, which usually leads to wrong pairwise relationship for large neighborhoods because the Euclidean distance fails to depict the true semantic similarity on the feature manifold. On the contrary, our method mines the feature manifold in an unsupervised manner, through which the semantic similarity among instances is learned in order to obtain discriminative representations. Specifically, we employ the Generative Adversarial Networks (GAN) to mine the underlying feature manifold, where the generated features are applied as the proxies to progressively explore the feature manifold so that the semantic similarity among instances is acquired as reliable pseudo supervision. Extensive experiments on image classification demonstrate the superiority of our method compared with the state-of-the-art methods. The code is available at https://github.com/ZiweiWangTHU/ISL.git.
Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multi-view, image-collection, and video sets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا