Do you want to publish a course? Click here

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

92   0   0.0 ( 0 )
 Added by Long-Nhat Ho
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multi-view, image-collection, and video sets.



rate research

Read More

Dense 3D object reconstruction from a single image has recently witnessed remarkable advances, but supervising neural networks with ground-truth 3D shapes is impractical due to the laborious process of creating paired image-shape datasets. Recent efforts have turned to learning 3D reconstruction without 3D supervision from RGB images with annotated 2D silhouettes, dramatically reducing the cost and effort of annotation. These techniques, however, remain impractical as they still require multi-view annotations of the same object instance during training. As a result, most experimental efforts to date have been limited to synthetic datasets. In this paper, we address this issue and propose SDF-SRN, an approach that requires only a single view of objects at training time, offering greater utility for real-world scenarios. SDF-SRN learns implicit 3D shape representations to handle arbitrary shape topologies that may exist in the datasets. To this end, we derive a novel differentiable rendering formulation for learning signed distance functions (SDF) from 2D silhouettes. Our method outperforms the state of the art under challenging single-view supervision settings on both synthetic and real-world datasets.
Contrastive self-supervised learning has largely narrowed the gap to supervised pre-training on ImageNet. However, its success highly relies on the object-centric priors of ImageNet, i.e., different augmented views of the same image correspond to the same object. Such a heavily curated constraint becomes immediately infeasible when pre-trained on more complex scene images with many objects. To overcome this limitation, we introduce Object-level Representation Learning (ORL), a new self-supervised learning framework towards scene images. Our key insight is to leverage image-level self-supervised pre-training as the prior to discover object-level semantic correspondence, thus realizing object-level representation learning from scene images. Extensive experiments on COCO show that ORL significantly improves the performance of self-supervised learning on scene images, even surpassing supervised ImageNet pre-training on several downstream tasks. Furthermore, ORL improves the downstream performance when more unlabeled scene images are available, demonstrating its great potential of harnessing unlabeled data in the wild. We hope our approach can motivate future research on more general-purpose unsupervised representation learning from scene data. Project page: https://www.mmlab-ntu.com/project/orl/.
112 - Jinglu Wang , Bo Sun , Yan Lu 2018
In this paper, we address the problem of reconstructing an objects surface from a single image using generative networks. First, we represent a 3D surface with an aggregation of dense point clouds from multiple views. Each point cloud is embedded in a regular 2D grid aligned on an image plane of a viewpoint, making the point cloud convolution-favored and ordered so as to fit into deep network architectures. The point clouds can be easily triangulated by exploiting connectivities of the 2D grids to form mesh-based surfaces. Second, we propose an encoder-decoder network that generates such kind of multiple view-dependent point clouds from a single image by regressing their 3D coordinates and visibilities. We also introduce a novel geometric loss that is able to interpret discrepancy over 3D surfaces as opposed to 2D projective planes, resorting to the surface discretization on the constructed meshes. We demonstrate that the multi-view point regression network outperforms state-of-the-art methods with a significant improvement on challenging datasets.
551 - Yichao Zhou , Shichen Liu , Yi Ma 2020
3D reconstruction from a single RGB image is a challenging problem in computer vision. Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability. In this work, we focus on object-level 3D reconstruction and present a geometry-based end-to-end deep learning framework that first detects the mirror plane of reflection symmetry that commonly exists in man-made objects and then predicts depth maps by finding the intra-image pixel-wise correspondence of the symmetry. Our method fully utilizes the geometric cues from symmetry during the test time by building plane-sweep cost volumes, a powerful tool that has been used in multi-view stereopsis. To our knowledge, this is the first work that uses the concept of cost volumes in the setting of single-image 3D reconstruction. We conduct extensive experiments on the ShapeNet dataset and find that our reconstruction method significantly outperforms the previous state-of-the-art single-view 3D reconstruction networks in term of the accuracy of camera poses and depth maps, without requiring objects being completely symmetric. Code is available at https://github.com/zhou13/symmetrynet.
We propose a novel generative adversarial network (GAN) for the task of unsupervised learning of 3D representations from natural images. Most generative models rely on 2D kernels to generate images and make few assumptions about the 3D world. These models therefore tend to create blurry images or artefacts in tasks that require a strong 3D understanding, such as novel-view synthesis. HoloGAN instead learns a 3D representation of the world, and to render this representation in a realistic manner. Unlike other GANs, HoloGAN provides explicit control over the pose of generated objects through rigid-body transformations of the learnt 3D features. Our experiments show that using explicit 3D features enables HoloGAN to disentangle 3D pose and identity, which is further decomposed into shape and appearance, while still being able to generate images with similar or higher visual quality than other generative models. HoloGAN can be trained end-to-end from unlabelled 2D images only. Particularly, we do not require pose labels, 3D shapes, or multiple views of the same objects. This shows that HoloGAN is the first generative model that learns 3D representations from natural images in an entirely unsupervised manner.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا